
Università degli studi di Torino

SCUOLA DI SCIENZE DELLA NATURA

Master’s Degree in Computer Science

Master’s thesis

DRIVER DISTRACTION
IDENTIFICATION FROM UNOBTRUSIVE

SENSORS AND VEHICLE DYNAMICS

Supervisors:
Prof. Marco Botta
Prof. Elvio Amparore

Candidate:
Giuseppe Mazzone

938528

Academic year 2020/2021



We can live a wonderful life in the world
if we know how to work and love,

work for those we love and love what we work for.

Lev Tolstoy



Originality Declaration

I declare that I’m responsible for the content of the paper I submit for the purpose of
obtaining the title, that I have not plagiarized in whole or in part the work produced
by others and that I have cited the original sources in a manner consistent with the
regulations in force on plagiarism and of copyright.

I am also aware that if my declaration turns out to be false, I could incur the penalties
provided by the law and my admission to the final test could be denied.



Acknowledgements

My masters work and this thesis as a result would not be possible without the support
of a lot of people.

Firstly, I would like to thank the University of Torino for making a scholarship available
for this project and I thank Prof. Marco Botta, Prof. Elvio Amparore, Prof. Susanna
Donatelli and Eng. Idilio Drago for welcoming me into their work team and for helping
me to grow professionally and knowledge during the entire period. I am grateful for
their support, feedback and comments on this thesis to help and improve my research.

I thank my family, my mom and dad, who allowed me to study and continue my studies
in another city and their continued support over the years, without ever missing me
anything despite the distance.

To my girlfriend who always supported and followed me throughout my master univer-
sity career. To my friends and my fellow students, in particular Davide and Matteo.
Thanks to all of you for always being there.



Abstract

With the increasing use of mobile phones, interacting with complex infotainment sys-
tems of modern cars increases the driver’s distraction notably. Consequently, this in-
duces many road accidents and has become an increasingly relevant matter to discuss
in recent traffic safety research.

Analyzing driver behavior using machine learning methods is one of the most promising
solutions to detect driver distraction. The aim of the research in this thesis is to study
whether it is possible to determine distraction using only unobtrusive sensors and
vehicle dynamics, with a focus on cognitive distraction. Experiments are carried out
in the context of the European project “NextPerception”.

In this thesis, we have been using driving data collected on a driving simulator from
26 different participants, consisting in RGB video and vehicle dynamics. We have
manually and automatically selected the most influential features from this dataset,
such as gaze, Action Units of facial muscles, lane gap, acceleration, and other vehicle
dynamics data that, according to the literature, are relevant to classify distracted and
non-distracted drivers.

We used Machine Learning methods for classification and regression, such as Random
Forest, K-NN, Multi-Layer Perceptron, Long Short Term Memory, and 1D Convolu-
tional Neural Network. The results show that eyes-off-road condition is a very simple
task with the front camera data; in fact, even with the very simple MLP model, an
F1-Score in the distracted class of about 92% is obtained. For cognitive distraction, on
the other hand, we reach poor performance, in fact, the maximum accuracy obtained
is 61% and it is even worse for all other models tested, as if it were a random guessing
model. We verified that the dataset does not provide enough information to better
model cognitive distraction.

Finally, the dominant features that most influence the classification (global features
importance) have been identified, thus allowing us to explain the classification and to
compare them with recent research.

In conclusion, the classifier was implemented in an embedded system capable of inter-
facing with the simulator which will allow a fine-tuning of the system.
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Italian abstract

Con il crescente utilizzo dei telefoni cellulari e l’interazione con i complessi sistemi di in-
fotainment delle auto moderne, la distrazione del conducente è aumenta notevolmente.
Di conseguenza, questo provoca molti incidenti stradali ed è diventato un argomento
sempre più rilevante da discutere nelle recenti ricerche sulla sicurezza stradale.

L’analisi del comportamento del conducente utilizzando metodi di apprendimento auto-
matico è una delle soluzioni più promettenti per rilevare la distrazione del conducente.
Lo scopo della ricerca in questa tesi è studiare se è possibile determinare la distrazione
utilizzando solo sensori non invasivi e la dinamica del veicolo, con particolare atten-
zione alla distrazione cognitiva. Gli esperimenti sono condotti nell’ambito del progetto
europeo “NextPerception”.

In questa tesi, abbiamo utilizzato i dati di guida raccolti su un simulatore di guida da
26 diversi partecipanti, costituiti da video RGB e dinamica del veicolo. Abbiamo se-
lezionato manualmente e automaticamente le features più influenti da questo set di dati,
come lo sguardo, le unità di azione dei muscoli facciali, il gap di corsia, l’accelerazione
e altri dati sulla dinamica del veicolo che, secondo la letteratura, sono rilevanti per
classificare i conducenti distratti e non distratti.

Abbiamo utilizzato metodi di Machine Learning per la classificazione e la regressione,
come Random Forest, K-NN, Multi-Layer Perceptron, Long Short Term Memory e 1D
Convolutional Neural Network. I risultati mostrano che gli “occhi fuori strada” sono un
compito molto semplice da individuare con i dati della fotocamera anteriore; infatti,
anche con il semplicissimo modello MLP, si ottiene un F1-Score nella classe distratta di
circa 92%. Per la distrazione cognitiva, invece, si arriva a prestazioni scadenti, infatti
la massima accuratezza ottenuta è del 61% ed è anche peggio per tutti gli altri modelli
testati, come fosse un modello casuale. Abbiamo verificato che il dataset utilizzato non
fornisce informazioni sufficienti per modellare meglio la distrazione cognitiva.

Infine, sono state individuate le features dominanti che maggiormente influenzano la
classificazione (features importance a livello globale), permettendo così di spiegare la
classificazione e di confrontarle con ricerche recenti.

In conclusione, il classificatore è stato implementato in un sistema embedded in grado
di interfacciarsi con il simulatore che consentirà una messa a punto del sistema.

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Context of this research: Next Perception . . . . . . . . . . . . . . . . . 3

1.3 Objective of this research thesis . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Methodology of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Machine Learning Techniques 11

2.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Linear Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . 15

2.1.3 Artificial Neural Network And Deep Learning . . . . . . . . . . 17

2.2 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.2.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Time Series Classification . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Time Series Processing . . . . . . . . . . . . . . . . . . . . . . . 28

3 Review of Literature 32

3.1 Driving Automation System . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.1 A Taxonomy of Automation . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Three Way of Distraction . . . . . . . . . . . . . . . . . . . . . 35

vi



CONTENTS

3.1.3 Ways to detect Driver Distraction . . . . . . . . . . . . . . . . . 36

3.2 Distracted Driver Machine Learning review . . . . . . . . . . . . . . . . 39

4 Dataset Description and Analysis 42

4.1 Driving Simulator and Data Collection . . . . . . . . . . . . . . . . . . 42

4.1.1 Vehicle Dynamics Data . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2 Road Information . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Internal Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Merging: Time Lagged Cross-Correlation . . . . . . . . . . . . . . . . . 52

5 Features Selection and Extraction 54

5.1 Features Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Models Training and Evaluation 69

6.1 Model Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1.1 Models Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 69

MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1D-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Inference With Features Importance . . . . . . . . . . . . . . . . . . . . 87

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Real-Time System Interaction 97

8 Conclusion and Future Work 101

vii



CONTENTS

Bibliography 108

viii



Chapter 1

Introduction

1.1 Motivation

Autonomous vehicles seem to be closer than expected on their timeline. However, there
is still a decade of driving manual as well as semi-autonomous vehicles before we can
experience completely automated vehicles on the road. Where the driver has been in
charge for more than a century to ensure that the vehicle navigates safely through
traffic, more and more automated driving functions are nowadays integrated into our
vehicles in order to ensure major safety through traffic.

The promise is to drastically reduce the number of traffic accidents due to human error,
but there are clear technological challenges ahead before that can be accomplished.

In recent years, traffic accidents caused by distracted driving have been on the rise
with the popularization of smartphones and IVISs. In fact, distraction is one of the
greatest risk factors for road crashes. In the United States there are approximately 6
million reported car accidents annually, each day more than 9 people are killed due
to distracted driving, more than 1060 people are injured in crashes that involve a
distracted driver . According to the National Highway Traffic Safety Administration
(NHTSA), in 2018, 8% of all fatal crashes and 14% of all police-known traffic crashes
in the USA were caused by distraction [1] .

NHTSA defines distracted driving as any activity that diverts attention from driving,
including talking or texting on the phone, eating and/or drinking, talking to people in
your vehicle, fiddling with the stereo, entertainment or navigation system or anything
else that takes driver’s attention away from the task of safe driving.

According to the 100-Car Naturalistic Driving Study ” conducted by National Highway
Traffic Safety Administration (NHTSA) the secondary tasks that contributed to the
highest number of crashes or near-crashes were cell phones, internal distraction, and
passenger related secondary tasks (primarily conversations). An explicative example
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CHAPTER 1. INTRODUCTION

is that sending or reading a text takes the driver’s eyes off the road for a minimum of
5 seconds. At 55 mph, this is the same as driving the length of an entire football field
with the eyes closed.

Distraction occurs when a driver engages in a secondary activity that removes attention
from the primary task of driving safely. Distractions can be both insides (e.g., using a
mobile phone or wearable technology, talking with passengers) or outside a vehicle (e.g.,
looking at roadside advertising or navigating complex road contexts) and in general it
can be divided into three types: Visual Distraction, Manual Distraction and Cognitive
Distraction.

Recent research suggests that limiting technology-based secondary tasks will reduce
driver distraction. There is a suggestion that higher levels of vehicle automation can
induce boredom and, consequently, cause drivers to divert their attention towards
competing secondary tasks.

The most common secondary task examined in literature was mobile phone use and in-
vehicle information systems (IVISs). Mobile phone use while driving is common, with
nearly half of the drivers reported sending texts while driving. 1 out of 3 people text
while driving. But these tasks refer to visual or manual distraction and not specifically
for ’mind-off-road’ condition of cognitive distraction.

With the increase in the use of artificial intelligence in every sector, the manual use
of the mobile phone is diminished. This is thanks to virtual personal assistants, for
example, ’Ok Google’ or to the new technologies introduced in cars such as ’Hey Mer-
cedes’ or ’Hey BMW’ that allow the hands-free use of mobile phones and infotainment
systems.

However, hands-free does not necessarily mean safe-driving. In fact these, just like
talking to a passenger or listening / singing on the radio, cause the condition called
’mind-off-road’ commonly called cognitive distraction.

Cars need to build an understanding of the driving environment, beyond the capabilities
of individual on-board sensors, which are always limited. The vehicle safety aspect has
been enabled through vehicle sensors that observe the surrounding environment as
well as the driver behaviour, which is further used to give alerts to drivers for potential
collisions.

While the driver assistance aspect is equipped through In-Vehicle Information System
(IVIS) and systems such as Cruise Control which enable drivers to relax.

Vehicle technology has been enriched with an advanced observation of the human driver
in the vehicle to bring about a more personalized and safe experience.

In fact, a number of today’s new motor vehicles have technology that helps drivers
avoid drifting into adjacent lanes or making unsafe lane changes, or that warns drivers
of other vehicles behind them when they are backing up, or that brakes automatically
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CHAPTER 1. INTRODUCTION

if a vehicle ahead of them stops or slows suddenly, among other things.

These and other safety technologies use a combination of hardware (sensors, cameras,
and radar) and software to help vehicles identify certain safety risks so they can warn
the driver to act to avoid a crash.

1.2 Context of this research: Next Perception

Smart complex systems have become of great significance particularly in healthcare and
autonomous driving domains. The precision and timeliness of the decisions depend on
the systems’ capacity to accurately understand individuals and their environment.

Next Perception aims to bring perception sensing technologies to the next level, en-
hancing their features to allow for more accurate detection of human behaviour and
physiological parameters. Ranging technologies like Radar, LiDAR and Time of Flight
cameras have been applied for detecting objects and assist in navigation in recently
developed ADAS solutions.

The next generation of these perception sensors will be able to successfully detect hu-
mans and accurately monitor their behaviour and physiological parameters. Besides
more accurate automotive solutions ensuring driver vigilance and pedestrian and cy-
clist safety, this innovation will open up new opportunities in health and wellbeing to
monitor elderly people at home or unobtrusively assess their health state.

The goal of this project is to develop next-generation smart perception sensors and
enhance the distributed intelligence paradigm to build versatile, secure, reliable, and
proactive human monitoring solutions for the health, wellbeing, and automotive do-
mains.

The solutions developed in the project are key to realize the foreseen revolutions in
Health and Well-Being - patient-centric care through advanced monitoring solutions,
and Transport and Smart Mobility - automated driving made safe by drivers, and
vulnerable road user monitoring.

The project brings together major industrial players and research partners to address
top challenges in health, wellbeing, and automotive domains

The project is further organized in use cases, which help to provide a context for the
technology development and allows for requirement solicitation from the target groups
as well as small scale pilots.

The three use cases are:

1. Integral vitality monitoring for elderly and exercise
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CHAPTER 1. INTRODUCTION

2. Driver monitoring

3. Safety and comfort for vulnerable road users at intersections

The use cases are concrete, feasible and potentially commercially viable examples of the
deployment of the new technologies and will steer the development of business mod-
els and planning of exploitation steps. Figure 1.1 provides an overview of the use cases.

Use case 2, named ’Driver monitoring’, focuses on the definition of innovative sens-

Figure 1.1: Use cases in NextPerception mapped to domains

ing solutions to monitor driver state and behaviour in order to mitigate the risk of
accidents and their consequences on individuals and, indirectly, on society.

This Use case is the context in which this thesis work takes place.

It considers both public and private vehicles, and trucks with differences in driver
monitoring. A relevant goal is to develop a Driver Monitoring System (DMS), which
can classify both the driver’s distraction states and the driver’s emotional states, as
well as the activities and positions of occupants (including driver) inside the vehicle
cockpit. Examples of distraction states are:

1. Visual distraction: refers to the Eyes-off-road situations where driver takes
his/her eyes off the road for some other task;

2. Manual distraction: refers to situations where driver is doing something else
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CHAPTER 1. INTRODUCTION

in the car cabin with his/her hands not being on the steering wheel, for example,
drinking water.

3. Cognitive distraction: refers to the “look but not see” situations when the
drivers’ eyes are focused on the forward roadway, but his/her mind is not. Typi-
cally, cognitive distractions can result from fatigue, conversation with a co- pas-
senger, listening to the radio, and drowsiness.

4. Emotions distraction: refers to situations where driver is unable to drive such
as anxiety, panic attack, illness, anger/aggressiveness, and so on.

This use-case proposes a driver cognitive and emotional detection system, considering
different machine learning techniques, compared to each other.

In order to achieve that, several sensors and source of information will be considered:

• The use of internal camera, that produce image, audio processing and computer
vision (such as Eye-tracking to understand where the driver is looking at, face
and expression recognition, etc.).

• Physiological and bio-metric driver signals (heart rate, blood pressure, ECG/EEG,
skin conductance and so on).

• Vital signs monitoring and health-related analysis based on mm-wave radar(s),
in combination with other sensor types.

• Vehicle dynamic data and driving style (speed, yaw-rate, steering wheel, acceler-
ator and braking behavior, etc.) acquired by ad hoc sensors and by data already
available from vehicle (CAN-BUS) in order to detect “abnormal behavior” and so
identify tiredness or drowsiness.

• Traffic data (obstacles speed and velocity, position of ego-vehicle in the lane, and
so forth), possibly supplied by a simulator.

This information will be used for autonomous driving functions (through Machine
Learning techniques), in order to identify the driver’s status. The Autonomous Driv-
ing Functions that will be implemented are primary Take-Over-Request, in which the
system can know the status of the driver and select the most appropriate strategy to
adopt, and driver support in that the system can offer “its support” if the driver be-
haviour appears inappropriate.

Demonstrators in this use case are: driving simulator (RELAB), passenger car “Marylin”
(VTT) and Heavy good vehicle TTS. The pilots will be conducted in both a simula-
tion environment and on real vehicles, and will be located in Italy and Finland. First
innovations of this use case include:
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CHAPTER 1. INTRODUCTION

1. in-vehicle vital signs monitoring by means of UWB/FMCW radar, ECG, GSR
and other suitable sensors, as well as camera and acoustic sensors for in-vehicle
behaviour monitoring.

2. Driver cognitive and emotional state recognition algorithms based on vital sign
and behavioural input illustrate analytics and decision-making innovations.

Next Perception will provide innovative technologies for perception sensors, distributed
intelligence and proactive monitoring. Driver drowsiness and distraction are some of
the major causes of mortality in traffic accidents worldwide but only recently with the
developments on autonomous vehicles, the research on driver status monitoring has
received a positive stimulus to explore methodologies to apply and study prototypal
reliable and feasible implementations for them.

The starting point is, as for each system for the autonomous vehicle: no sensor type
works well for all tasks and for all conditions; so sensors fusion and complex algo-
rithms and intelligent elaboration capabilities are required to provide redundancy for
autonomous functions. These research activities have been focused in several method-
ological strategies, from advanced image-based analysis up to physiological monitoring,
to exploit them on drowsiness detection and driver fatigue recognition.

Human Factors related to driver’s state are a major cause of traffic crashes. Pub-
lic and standardization bodies are strongly supporting research to develop in-vehicle
systems to continuously monitor driver alertness and performance. Scientific support
for the feasibility of this countermeasure concept is provided by research showing that:

1. The use of direct, unobtrusive driver psychophysiological monitoring (e.g., of eye
closure) could potentially enhance distraction and drowsiness detection signifi-
cantly.

2. Drowsy drivers typically do not “drop off’ instantaneously. Instead, there is
a preceding period of measurable performance decrement with associated psy-
chophysiological signs.

3. Distraction can be detected with reasonable accuracy using driving performance
measures such as “drift-and-jerk” steering and fluctuations in vehicle lateral lane
position.

4. The use of secondary/subsidiary auditory tasks (e.g., auditory recognition tasks
presented to the driver via recorded voice) could further enhance detection accu-
racy.

An envisioned vehicle-driver-based state detection system would continuously and un-
obtrusively monitor driver’s condition at a “micro-performance” level, such as minute
steering movements, and “micro-behavioral” level, such as driver psychophysiological
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CHAPTER 1. INTRODUCTION

status, in particular eye closure and facial expressions. The system may enable the
handling (and the personalization) of immediate warning signals when driver’s state
is detected with high certainty, or, alternatively, to present a verbal secondary task
via recorded voice as a second-stage probe of driver status in situations of possible
drowsiness.

Moreover, the detection of emotion can further increase the driver’s safety. Tradi-
tionally, emotion recognition has been extensively used to implement the so-called
Sentiment Analysis. It has been widely used by different companies to gauge consumer
mood towards their product or brand in the digital world. However, it can be also used
to recognize different emotions on an individual’s face automatically, to make cars safer
and more personalized.

In fact, car manufacturers around the world are increasingly focusing on making cars
more personal and safe to drive. In their pursuit to build smarter car features, it makes
sense for carmakers to use AI to help them understand human emotions.

For example, using facial emotion detection, smart cars can interact with the driver to
adapt the level of automation or support the decision-making process if emotions that
can affect the driving performance are detected. In fact, (negative) emotions can alter
perception, decision making and other capabilities eminent for driving and can even
affect physical capabilities.

Therefore, the main innovations to be achieved through NextPerception are:

1. in-vehicle vital signs monitoring by means of UWB/FMCW radar, ECG, GSR
and other suitable sensors, as well as camera and acoustic sensors for in-vehicle
behaviour monitoring.

2. Driver and passenger cognitive and emotional state recognition algorithms based
on vital sign and behavioural input illustrate analytics and decision-making in-
novations.

3. Monitoring of occupants to detect they are healthy too

4. Monitoring of social behaviour in the cockpit to predict any risk-prone behaviour
(e.g. engaging discussions while driving, cognitive distraction of the driver)

The proposed solutions integrate different data sources, collecting a large set of relevant
information and processing it in real time.

Extending the interaction with several sources of information, including sensors inte-
grated in wearable devices of occupants and from IoT platform, will improve the fusion
of collected data enhancing the accuracy of DMS, ensuring faster detection, increased
number of monitored situations, improved privacy with local data processing, and the
overall cost reduction of the DMS. Figure 1.2 contains the concepts explained so far.
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Figure 1.2: The main sensor clusters will be investigated and exploited for the detection
of driver status

1.3 Objective of this research thesis

In the context of the ’Next Perception’ project, the aim of this research thesis focuses
on use case 2, i.e. Driver Status Monitoring.

Specifically, the aim of this thesis is to study whether it is possible to determine dis-
traction using only unobtrusive sensors and vehicle dynamics, with a focus on cognitive
distraction.

This study will give as a result a Driver Distraction Classifier (DDC) that will be
trained and validated through the analysis and elaboration of data generated from the
first pilot of UC1D1 on the Next Perception project from RE:Lab partner.

The focus of the DDC, in Next Perception context, will mostly be on the safety-related
motivation (i.e. number of accidents), in the detection of the moments where the driver
is distracted, and in its interaction with the decision module to avoid collisions.

8



CHAPTER 1. INTRODUCTION

1.4 Methodology of this thesis

Based on what is defined in the Next Perception project, and on the two types of
distraction (visual and cognitive) induced in the dataset, figure 1.3 shows the idea that
in this thesis we want to prove

Figure 1.3: Cognitive and Visual distraction idea

In order to achieve the objectives of this thesis in Chapter 2, we first of all, a summary
of the methods of preparation, extraction and selection of data and machine learning
techniques was carried out with a focus in time series prediction/classification problems.

Subsequently, in Chapter 3 a review of the Driver Automation System and the need for
them to monitor the driver’s status is reported. Here the various types of distractions
and ways used by recent research to detect them are illustrated.

Follows Chapter 4 which describes the dataset used (starting from the collection of
data) and the analyzes and pre-processing that have been carried out on it.

Subsequently, in Chapter 5, features extraction and selection are discussed based on
recent research and on correlation of them.

After identifying the features, Chapter 6 illustrates the training and evaluation of the
tested models. Validation focus on standard assessment metrics: AUC measurements,
precision, recall and the resulting f1 score. Furthermore, in this chapter an a posteriori
analysis is also carried out on the output returned by the DDC through inferential
analysis on the features that contribute most to the classification (global features im-
portance) with eXplainableAI techniques.

In Chapter 7 is explained how our classifier has been implemented in the embedded
system able to communicate with the simulator and the remaining components of the
Next Perception project.

Finally, in Chapter 8 reports the conclusions, our contribution provided by this research
thesis and the limitations encountered, followed by future work to be carried out

A generic architecture that summarizes the work done in this thesis is shown in figure

9



CHAPTER 1. INTRODUCTION

1.4.

Figure 1.4: Architecture of this thesis work
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Chapter 2

Machine Learning Techniques

Machine Learning (ML) is a term used for computer programs that can learn from a
data set and be used for prediction and the classification of a data set in hand. Machine
learning is a sub-domain of artificial intelligence (AI).

The goal of machine learning is usually to understand the structure of the data and
to match that data to models that can be understood and used by humans. Machine
learning is a field that continues to evolve. For this reason, there is something else to
keep in mind as you work with machine learning methods, or analyze the impact of
machine learning processes.

Two widely accepted methods of machine learning are supervised learning trains algo-
rithms based on input by human and output model data, and unsupervised learning
algorithm provides a non-labelled data to allow it to detect input and produce output.

2.1 Supervised Learning

The majority of applications related to Machine Learning falls into the Supervised
Learning problem that is indeed the most common sub branch of ML today.

In Supervised Learning, the model uses the labelled data for learning. After the thor-
ough analysis of the data, the algorithm determines which label should be assigned to
new data based on pattern and associates the patterns to the unlabelled new data.

Supervised Learning algorithms are designed to learn by example and indeed the name
“supervised” learning itself comes from the idea that training these algorithms is like
having an entity that behaves like a teacher that tells if an output is correct or not.
Hence a labelled dataset is provided to the algorithm in which a “right answer” (ground
truth) is given at priori and then the algorithm learns from this training data.
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CHAPTER 2. MACHINE LEARNING TECHNIQUES

Then once the algorithm is trained, it provides a “right” answer based on new data,
where the output is unknown, finding a relationship between the input and the output.

In Supervised Learning, the model uses the labelled data for learning. After the thor-
ough analysis of the data, the algorithm determines which label should be assigned to
new data based on pattern and associates the patterns to the unlabelled new data.

Moreover, supervised learning problems are categorized into "regression" and "classi-
fication" problems.

In a regression problem the aim is to predict results within a continuous output, this
means mapping input variables to some continuous function (e.g. predict the age of a
person based on their face).

Instead in a classification problem, the aim is to predict results in a discrete output,
and this means to classify data into one of two or more discrete numbers (classes or
categories) mapping input variables into discrete categories (e.g. predict whether a
driver is distracted or not, or predict if he uses a phone, interacts with radio, talks
with co-passengers, etc.).

To give a more formal explanation, let’s define some terms that will be used from here
on.

Let’s consider with x(i) the input variables while for the predicted value is used y(i) in
order to indicate the target value or the “output”. The training example is the pairs
(x(i),y(i)) with i from 1 to m, where m is the dimension of the training set.

Furthermore, X indicates the input values space and Y the output values space. The
aim of supervised learning is to learn a function h : X → Y given a training set
(x(i), y(i)) so that the learned function h(x) is a “good” predictor for the corresponding
value of y.

Some popular examples of supervised ML algorithms are Linear Regression, Logistic
Regression, Random Forest, Support Vector Machine and Neural Networks.

It is also of primary importance to highlight that all these Machine Learning algorithms
completely depend on optimization techniques, that are the processes by which the
optimal set of parameters are found. Here Gradient Descent will be discussed, that is
the simplest and used optimization technique.

Other two important concepts are model complexity, and the bias-variance trade-off
that are related quantities.

Model complexity refers to the complexity of the function that the algorithm is at-
tempting to learn (similar to the degree of a polynomial). The proper level of model
complexity is generally determined by the nature of the training data. If only a small
amount of data is provided, or if the data are not uniformly spread throughout different
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possible scenarios, then the best choice is to opt for a low-complexity model. This is
because a high complexity model will overfit if used on a small number of data points.

Overfitting refers to learning a function that fits training data very well, but does
not generalize to new and unseen data points. Basically in this case the algorithm is
learning to produce the training data without learning the real underlying structure in
the data that leads to this output.

Therefore bias-variance trade-off relates to model generalization and any model must
be well balanced between bias, which is the constant error term, and variance, which
is the amount by which the error may vary between different training sets.

Note that bias and variance typically move in opposite directions from each other;
increasing bias will usually lead to lower variance, and vice versa, so it is necessary to
find the best trade-off suitable for the specific cases.

2.1.1 Linear Regression

In linear regression a linear relationship is assumed between the input variables x and
the single output variable y and can be represented by the equation:

y = θ0 + θ1x1 + θ2x2 + . . .+ θnxn

where y is the predicted value, θ0 is the bias term, x1...xn are the features values where
n is the number of features, and finally θ1...θn are the model parameters. The primary
goal of ML algorithms is always to build a model, which is basically a hypothesis
function which can be used to find an estimation for y based on x the input features
finding the right θ values: y = θTx.

In order to measure the goodness and the accuracy of this hypothesis function a cost
function is used. The cost function is defined as “a function that maps an event or
values of one or more variables onto a real number intuitively representing some “cost”
associated with the event.”. The cost function is defined as the average difference
between all the results of the hypothesis and the actual predicted output y.

For example the Mean Square Error (called MSE or quadratic loss) is basically the
sum of squared distances between the target variable yi (ground truth) and predicted
values ŷi and this loss function is a way of measuring how well the model fits into the
data. The difference between the predicted values and ground truth measures the error
difference.

ei = ŷi − yi
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Other loss functions can be used: the Mean Absolute Error (MAE or L1 loss), Huber
loss (Smooth Mean Absolute Error) and the Cross-entropy loss (or log-loss) and all
of these provide a different measure of how good a prediction model does in terms of
being able to predict the expected outcome.

There is not a single loss function that works for all kinds of dataset but each one can
perform at their best in different cases. Then, once a proper loss function has been

Figure 2.1: An example of a linear model, that is the line that best approximates all
the points on the plane.

selected a common optimization method to find the minimum minθ Jθ is the Gradient
Descent.

The best fit line is considered to be the line for which the error between the predicted
values and the observed values is minimum. It is also called the regression line and
the errors are also known as residuals. Residuals can be visualized by the vertical lines
from the observed data value to the regression line. To give an example, refer to Figure
2.1 where the straight line that best approximates all the points is easily identified.

It is almost always practically impossible that a system with a number of equations
considerably higher than the number of unknowns is solvable, however this system of
equations can be formalized in matrix notation, more compact and homogeneous:

Xw = y

The X matrix shows the coefficients of the features and bias; w represents the param-
eters that best approximate, i.e. those values that multiplied by the coefficients must
give as a result the vector y.
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2.1.2 Support Vector Machine

When there is a classification problem, as in the example shown in Figure 2.2, the goal
is to find the decision boundary, which correctly divides the two classes of examples;
two linearly separable classes can be classified by infinite hyperplanes and the goal of
the SVM is to find the hyperplane that divides the best way the two classes. This

Figure 2.2: Search for a linear classifier among the different (and infinite) possible ones
linear classifiers for the positive and negative examples proposed.

kind of classifier models are highly accurate and are able to compute and process the
high-dimensional data and they are very flexible in modelling diverse types of data.
Moreover, SVMs belong to the general category of kernel methods and thanks to the
kernel trick a non-linear classification boundary can be easily generated using a method
designed for linear classifiers (Linear SVM).

Support vector learning is the problem of finding a separating hyperplane that separates
the positive examples (labeled +1) from the negative examples (labeled -1) and the
margin of the hyperplane is defined as the shortest distance between the positive and
negative instances (training data sample) that are closest to the hyperplane.

The intuition behind searching for the hyperplane with a large margin is that it is
more resistant to noise than a hyperplane with a smaller margin. The maximal margin
classifier is the hyperplane for which the margin is the largest. The training examples
nearest to the decision boundary are called support vectors: as we shall see, the decision
boundary of a support vector machine (SVM) is defined as a linear combination of the
support vectors.

An explanation of what has just been said can be seen in the figure 2.3 Formally we
suppose that all data satisfy the constraints:
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Figure 2.3: The ideal linear classifier, equidistant from the closest examples of both
classes.

ω · xi + b ≥ +1 yi = +1
ω · xi + b ≤ +1 yi = −1

So we can reformulate the problem as:

yi (ω · xi + b) ≥ 1

It can be shown that the maximum margin separating hyperplane can be constructed
by solving the Primal optimization problem:

minω∈H
1
2
‖ω‖2 subject to yi (ω · xi + b) ≥ 1 ∀i

As cost function we can use the Relu function so that:

θTx > 1 for y = 1 and θTx < −1 for y = 0

Now the model must learn parameters θ, or w, such that θTx > 1 for y = 1 andθTx <
−1 for y = 0. This is related to the large-margin intuition.

The overall objective for a SVM looks like:

minθ C
∑m

i=1

[
y(i) Cost1

(
θTx(i)

)
−
(
1− y(i)

)
Cost0

(
θTx(i)

)]
+ 1

2

∑n
i=1 θ

2
j
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Notice how λ (the regularization parameter which governs the trade-off between over-
fitting and the complexity of the model) has been replaced by another constant that
plays the same role C = 1λ . Looking at the formula it is clear how a Support Vector
Machine chooses a decision boundary which maximizes the margins from all the classes.

For the purposes of this discussion, it is assumed that the SVM constant C is set to a
very large value, C → ∞. A large value of C acts like a small value of λ, this is like
having SVM with no regularization, and this means that the model will be subject to
overfitting. As C goes up, the penalty associated to the term with Cost1 and Cost0
goes up, so the SVM is highly incentivized to make both the costs equal to 0 (i.e. make
‖θTx‖ > 1).

Moreover, SVM is a very powerful tool thanks to the kernel trick that makes possible
to classify non linearly separable datasets. What the kernel trick does is to use some
mapping functionK(x), called kernels, that projects the data onto a higher-dimensional
space where it is possible to find a linear decision boundary.

Indeed, the basic idea with nonlinear SVMs is to map training data into a higher
dimensional feature space via the kernel function K(x) and construct a separating
hyperplane with maximum margin in the input space.

It can be shown that a linear decision function in the feature space corresponds to a
non-linear decision boundary in the original input space.

2.1.3 Artificial Neural Network And Deep Learning

Artificial Neural Networks (ANN) are a powerful and universal tool, inspired by the
biological nervous system and the human brain, used mainly for pattern recognition,
computer vision and function approximation. Indeed, when dealing with a complex,
partially unknown and non-linear system ANN are the “perfect” tool for fulfilling the
task of a non-linear function approximator.

Non-linear decision boundary can be done mainly in two different ways: Adding non-
linear features or using ANN modeling as a non-linear decision boundary by internal-
izing the nonlinearity.

In our nervous system, Neurons are computational units that take inputs (dendrites)
as electrical inputs (called "spikes") that are connected to outputs (axons). Dendrites
are like the input features (x0, x1, ..., xm) and the output is the result of the hypothesis
function ϕ(•), i.e the activation function. In neural networks a logistic or sigmoid
activation function in often used.

The simplest structure for a neural network is the Perceptron that is a simple binary
classification algorithm proposed by Frank Rosenblatt in 1957. Its basic unit compo-
nent is the so-called artificial neuron.
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The perceptron structure is formed by an input layer, that stored the components of
the input vector x, the channels of weights w that connect the input layer to the neuron
and finally the body of the neuron that contains the sum function and the activation
function. In figure 2.4 you can see what has just been described.

Figure 2.4: A simple Neural Network Architecture: Perceptron

In the figure it can be seen that in addition to the weights, another factor is also
considered, namely bias. Weights are the values that are computed over the time of
training the model. Initially we start the value of weights with some initial value and
these values get updated for each training basis of the error function.

Bias is like the intercept added in a linear equation. It is an additional parameter
in the Neural Network which is used to adjust the output along with the weighted sum
of the inputs to the neuron.It helps in training the model faster and with better quality.

The net sum is the sum of the multiplication of input and weight. Activation function
is used to make the neural network non-linear. It limits the output between 0 and 1.

The Perceptron learning process can be described as in the following steps:

1. Perceptron takes the input, multiplies them by the weights and computes their
sum. The weights allow the perceptron to evaluate the relative importance of
each input.

2. The bias factor is added. This procedure is needed in order to move the activation
function and makes possible to fine-tune the numeric output of the perceptron.

3. The neuron feeds the previously computed sum through the activation function
(in this case a logistic or sigmoid function) that maps the input values to the
required output values. Activation function help the learning process especially
in case of a multi-layer perceptron (MLP). The non-linear properties of the acti-
vation function make possible to train complex neural networks.
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4. The perceptron output is a classification decision. In a feedforward neural net-
work the information always moves in one direction, from the input layer to the
output. In case of an MLP the output of one layer perceptron is the input of
the next layer. The final layer is the output layer and its output is the final
prediction.

As anticipated before, a multilayer perceptron (MLP) is a structure made by many
perceptrons, stacked in several layers where each layer takes input from the previous and
then signals to the next layer. Figure 2.5 shows a Multi-Layer Perceptron with three
layers. Each perceptron in the first layer on the left (the input layer), sends outputs
to all the perceptrons in the second layer (the hidden layer), and all perceptrons in
the second layer send outputs to the final layer on the right (the output layer). Neural

Figure 2.5: A Simple Multi Layer Perceptron with one hidden layer

Networks algorithms learn by discovering better weights at every step that result in a
more accurate prediction. There are several algorithms for the fine tuning of the weights
and the most common is the backpropagation that is a basic concept in modern neural
network training and it belongs to supervised learning.

The Backpropagation training method for Feed Forward Neural Network is based on the
gradient descent approach that iteratively adjusts the network weights and gradually
decreases the error on the training set in an iterative procedure.

Backpropagation is used in order to update the parameters Ω (matrix of weights w)
and this will bring, after a certain number of back and forward iteration, to the optimal
set of parameters. In this backpropagation phase the term δj(I) is computed for each
node and in each layer, and it represents the error of node j in layer I that is to say
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that captures the error in the activation and is computed starting from the last layer.
Therefore, by iteratively executing the forward and backward propagation phases the
set of optimal parameters Ω minimizing the cost function is reached.

Once the Artificial Neural Network is trained, it provides the “correct” predictions. It
is also important to note that one of the most important hyperparameters for ANN is
the learning rate that specifies how fast the learning process is performed. The learning
rate parameter value lies between 0 and 1 and its correct setting is crucial to the success
of the learning process and finding the optimal values.

Deep learning is a branch of machine learning, more specifically of Artificial Neural
Network, that has great flexibility for learning complex patterns in real-world data. In
deep learning the more abstract representation calculates in terms of the less abstract
ones. Deep neural networks learn categories incrementally using their hidden layers
and have to be fed by a huge amount of data.

Using deep networks reduces the need for domain expertise and dedicated feature se-
lection as the model learns complex patterns on its own in an incremental approach.
In theory, a simple neural network with a hidden layer can estimate almost any func-
tion. But in practice, shallow neural networks can be inefficient for learning complex
patterns, nonlinear correlations and large data sets.

Neural networks generally have different input features but can also have more tar-
get features. The inputs feed into layers of hidden units, which can be considered
characteristics that are never directly observed but useful for prediction.

Each layer independently from the others evaluates the input and classifies it through
the available examples. The sum of all these outputs also moderated by the weights
for each result of the different "neurons" will be the final output result.

The fundamental part of neural networks is the hidden layer that processes the output
of another neuron to produce a more specific response by adding features up to the
final output without being seen from the outside. The formula from one layer to the
next is this equation:

oj = f (
∑

iwi,jai + bi)

The layer with the nodes a serves as the input for the layer with the nodes o. To
calculate the values for each output node, we need to multiply each input node by a
weight w and add a bias b.

All these must then be added together and passed to a function f. This function is
considered to be the activation function and there are various functions that can be
used depending on the level or problem. It is generally common to use an adjusted
linear unit (ReLU) for hidden levels, a sigmoid function for the output level in a
binary classification problem, or a softmax function for the output layer of multi-class
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classification problems.

Each layer is implemented as a separate module that implements the prediction for-
ward and the BP (Back Propagation) backwards, i.e. it passes the importance of the
weights, updated gradually, even to the previous layers: The algorithm first initializes
the weights with random values that are modified during training through BP.

This is done using optimization methods (also called optimizers) such as gradient de-
scent, specifically used to reduce the error between the calculated and desired output
(also called the target output). The error is determined by a loss function whose entity
we want to reduce with the optimizer such as the entropy loss function.

In training each neuron there are two variants of the backpropagation algorithm:

• By pattern: updates the weights backward starting from the output level, using
the generalized delta rule

• By epochs: called batch mode, the weights are updated only after all the exam-
ples have been processed. The learning process continues from age to age until
the stop condition

There are mainly two stopping criteria:

1. Total Mean Square Error change: a situation of convergence is considered when
the rate of change of the mean square error per epoch is sufficiently small (or
does not change at all), usually in the range of change of [0.1, 0.01].

2. Generalization based: called batch mode, the weights are updated only after all
the examples have been processed. The learning process continues from age to
age until the stop condition

The fascination of neural networks and in deep learning, lies in the fact that the hidden
layers do not have to be defined by the designer, in fact what the hidden layers represent
is a learning result. Some examples of deep neural networks are LSTM and CNN.

CNN networks or "convolutional neural networks" (CNN) are neural networks that
find wide application in the field of Computer Vision, in the 3d version, but which
have found positive results in certain applications also in the 1D format applied to
time series or in NLP (Natural Language Processing) field. They are so called because
they are based on the convolution operation. That is, it is a mechanism that allows
you to slide a filter (or kernel) on the input, and to calculate at each iteration a value
representing the inverse correlation. In fact, the convolution operation is equivalent to
the correlation operation only that the filter is first rotated and therefore the result of
the convolution will be opposite to that of the correlation.

These networks consist of three specific types of layers (see figure 2.6) :
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Figure 2.6: A Convolutional Neural Network on a time series

1. Convolutional layer: characteristic of this type of neural network, it is in-
spired by biological processes for visual analysis in living organisms. The layer
of neurons that deals with convolution divides the data into various overlapping
fragments, which are then analyzed to identify the particularities that character-
ize it, transferring the information to the following layer in the form of a "feature
map" containing the relationships between neurons and particularity. To do this,
at each positioning on the input, the filter weights are multiplied with the content
of the input and a sum is calculated. The result of this convolution operation is
a new vector / matrix (feature map), smaller than the input, which contains a
representation of the same but higher level. It is possible to set the convolution
width to indicate how narrow it should be compared to the original.

2. Pooling layer: it is a fairly common process in neural networks, which consists
in reducing the size of the data by generalizing, in order to speed up the analysis
without losing too much precision. In the case of an image, the process is very
similar to a reduction in pixel quality. This layer therefore allows to simplify
the information extracted from a convolution layer. The degree of simplification
depends on the value of the offset for moving the window (“stride”). A frequently
used pooling algorithm is max pooling, which fetches the highest value on the
window.

3. Normalization layer: allows to avoid anomalies due to previous layers. The
most used function, since it is the fastest, is called ReLu or Rectified Linear Unit

There is also a fourth layer called the full connection layer or the total connection
layer. It is the last hidden layer of the neural network, in which all the inputs of the
various neurons are put together, allowing the particularities to be identified. It is
needed at the end of the process to classify the represented input with a higher level of
abstraction. In this layer all the nodes of consecutive layers are connected to each other.

Convolutional networks have some advantages in terms of performance: they are more
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parallelizable than recurrent networks, since the state of the network, at each step,
depends solely on the local context (through the convolution operator) rather than on
the set of past states, as for the RNN. But to its detriment, the convolutional network
is unable to recall examples seen previously.

The RNN networks or "recurrent neural network" instead, are a particular type of
network that has memory of what it has processed in the short term: in fact, they
take as input both the current example and the one they previously perceived in a
cyclic way, in such a way to be able to consider more than one example and have more
context and precision in the decision (see figure 2.7).

It is different from other Artificial Neural Networks in it’s structure. While other
networks “travel” in a linear direction during the feed-forward process or the back-
propagation process, the Recurrent Network follows a recurrence relation instead of a
feed-forward pass and uses Back-Propagation through time to learn.

Figure 2.7: A RNN unit and its unrolling

This network is based on two different functions:

1. ht: contains information about the previous state. In fact, it is computed using
the previous vector h(t − 1) and the current word vector xt. We also apply a
nonlinear activation function f (usually tanh or sigmoid) to the final summation.
It is acceptable to assume that h0 is a vector of zeros.

ht = f
(
W (hh)ht−1 +W (hx)xt

)
2. yt or ot: calculates the expected state vector in a given time interval t using for

example the softmax function to produce a vector (V, 1) with all elements adding
up to 1. This probability distribution gives us the index of the next state that
most likely comes from the distribution of the previous and memorized examples.
It uses the cross-entropy loss function in each phase of time t to calculate the
error between the predicted and the actual word.

yt = softmax
(
W (S)ht

)
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W weights are matrices initialized with random elements, adjusted using the error from
the loss function. We make this adjustment using the back-propagation algorithm.

Once you have the right weights for your training data, you can make a new prediction.

This information is then composed together in order to obtain some kind of corre-
lation between events close to each other. These correlations are called "long-term
dependencies" because each event is a function of the events that preceded it.

The "pure" RNNs present a big problem; they cannot remember facts seen a long
time ago but always tend to remember the recent ones, in fact they were quickly re-
placed by LSTM (Long Short Term Memory) which differ in that the updates of the
hidden layer are replaced by specially created memory cells, called gates, which allows
you to remember long-term dependencies.

An LSTM (long-short term memory network) is a type of recurrent neural network
that allows for example the accounting of sequential dependencies in a time series.

Given that correlations exist between observations in a given time series (a phenomenon
known as autocorrelation), a standard neural network would treat all observations as
independent, which is erroneous and would generate misleading results.

The main key to the operation of an LSTM is the state of the cell, and as you can see
in figure 2.8, it is the horizontal line that crosses the top of the diagram.

Figure 2.8: An unfolded Long Short Term Memory

LSTM and CNN layers are often combined when working with a time series. This
allows for the LSTM layer to account for sequential dependencies in the time series,
while the CNN layer further informs this process through the use of dilated convolu-
tions.

With that being said, standalone CNNs are increasingly being used for time series
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forecasting, and the combination of several Conv1D layers can actually produce quite
impressive results, rivalling that of a model which uses both CNN and LSTM layers.

2.2 Unsupervised Learning

The second major problem type of Machine Learning is Unsupervised Learning (UL)
that allows to find and infer the underlying structure of the data by clustering the data
based on relationships among the variables in the dataset. In unsupervised learning
unlabeled data are provided and the aim is to find the underlying causes and identify
the intrinsic structure and hidden pattern behind the data.

Since in unsupervised learning there is no prior knowledge on what the “clusters” look
like, in contrast with supervised learning, there is no feedback based on the prediction
results since labelled data are not provided.

So, the training dataset is made up as a set of input examples where there aren’t
target variables (labels). Therefore, unsupervised learning technique turns out to be
very useful in all those cases where there is no clue of what the desired target output
should be, such as, for example, the determination of a reference market for a new
product that has to be put on the market by a company.

There are many applications of Unsupervised Machine Learning techniques some ex-
amples of that can be:

1. Distance-based methods: There are many type of distance-based methods unsu-
pervised such as clustering with k-means or DB-Scan. In clustering automatically
split the dataset into groups according to similarity. However, it can happen that
cluster analysis overestimates the similarity between groups and does not treat
data points as individuals. For this reason, cluster analysis is a poor choice for
applications like customer segmentation and targeting.

2. Anomaly Detection: automatically discover unusual data points in the dataset.
This is useful in pinpointing fraudulent transactions, discovering faulty pieces of
hardware, or identifying an outlier caused by a human error during data entry.

3. Latent variable models: are commonly used for data preprocessing, such as re-
ducing the number of features in a dataset (dimensionality reduction and PCA-
Principal Component Analysis).

2.2.1 K-means Clustering

The fundamental idea behind Clustering is to group and categorize a set of objects into
many subsets, called clusters, in such a way that the all the items inside one subset are
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most "similar" to each other.

The way to distinguish between "similar" and "dissimilar" items is done through the use
of some metrics to calculate the similarity. Several metrics are present and the research
about which among the different measurements is the best is one of the challenges.

The most used metric is the Euclidean distance between points x1 and x2, that basi-
cally is the length of the line segment connecting them. In Cartesian coordinates, for
two points, x1 =

(
x
(1)
1 , x

(2)
1 , . . . , x

(n)
2

)
and x2 =

(
x
(1)
2 , x

(2)
2 , . . . , x

(n)
2

)
, their Euclidean

distance is given by:

d (x1,x2) =
√∑n

i=1 |xi1 − xi2|

where n is the dimension of a data point that is the number of features that charac-
terize each data.

K-means is one of the simplest unsupervised learning algorithms that solve the clus-
tering problem. The main idea of K-means is to define "K" number of centroids that
represents the number of clusters.

Each element in the data set is assigned to a cluster center (centroid) to which it is
closest, for example assigning a given sample of the dataset to the centroid with respect
to which it has the minimum Euclidean distance.
Provided that there is a suitable distance definition, then the algorithm is composed
of the following steps:

1. Place K points into the space represented by the objects that are being clustered.
These points represent initial group centroids

2. Assign each object to the group that has the closest centroid

3. When all objects have been assigned, recalculate the positions of the K centroids

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a sepa-
ration of the objects into groups from which the metric to be minimized can be
calculated.

These steps are iterated until the algorithm converges to one optimum value (most
likely a local optimum). The choice of the K value has to be taken in accordance to
the number of classes in which the data must be clustered. Figure 2.9 shown resulting
clusters of K-Means application obtained with a K equals to three.
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Figure 2.9: K-means clustering example with 3 centroids

2.3 Time Series Classification

Time series classification attempts to categorize time series into distinct categories, and
it is used for a wide range of applications. Some applications include the recognition
of signals, biometrics, sequences, sound, trajectories, and more. The challenge of using
time series is that time series are structural patterns that are dependent on element
order.

Traditionally, time series classification was tackled using distance-based methods [2].
However, recently, artificial neural networks have had many successes in time series
classification [3].
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For example, in recent research there are many uses of neural networks as recurring
networks, such as RNN or LSTM [4], in order to capture long-term dependencies in
sequences. Also, recent work has shown that feedforward networks such as Multi-Layer
Perceptrons (MLP) and temporal Convolutional Neural Networks (CNN) [5] can also
achieve competitive and sometimes better results for time series recognition.

Part of the recent successes of neural networks is due to the recent availability of
data. However, acquiring large amounts of data can be a problem for many time se-
ries recognition tasks. One solution to acquiring more data is to generate synthetic
patterns, i.e., data augmentation, data extraction.

Notably, data extraction/augmentation is a universal model-independent data side
solution. Features Extraction attempts to increase the generalization ability of trained
models by reducing overfitting and expanding the decision boundary of the model [6].

2.3.1 Time Series Processing

With the raise of smart sensors and of the Internet of Things paradigm, there is an
increasing demand for performing Data Mining tasks (classification, clustering, outlier
detection, etc.) on data stream produced by these interconnected devices.

In particular, Data Mining for time series has gained a relevant importance in the last
decade in automotive systems. Time series generally refers to a sequence of data that
are generated in successive order over a period of time and time-based attributes play
an important role in a time series dataset.

For these temporal data, data processing can be performed using various algorithms
and decomposition techniques for time series analysis. In addition, features can also be
obtained by sequence comparison techniques, such as dynamic time warping or other
measures of similarity.

Data preprocessing is a technique to transform the raw data into some meaningful and
understandable format.

Time series usually contain some distortions, which could be consequences of bad mea-
surements or just a property of the underlying process that generated the time series.
The presence of distortions can seriously deteriorate the performance of the models.
Pre-processing transformations can greatly improve the performance of time series ap-
plications.

The task of the pre-processing transformations is to remove different kinds of distor-
tions/noise. Some of the most common pre-processing tasks are: offset translation,
amplitude scaling, removing linear trend, removing noise, etc.

Another advantage that we can achieve thanks to pre-processing transformations lies in
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the fact that if we used a single datapoint of a time series to perform the classification
we would not consider datapoints seen previously. It is possible to perform processing
operation to extract new information from the past by statistical operation, in such a
way that the new created data have information about the past within them so as to
enhance and increase the data and the decision boundary recognition capacity.

There are many ways to processing a time series in order to make predictions [7]. The
most used are:

1. Sliding Window: In a sliding window, tuples are packed within a window that
moves across the stream of data according to a fixed interval. A time-based
sliding window with a length of x seconds and a sliding interval of y seconds
contains tuples that arrive within an x-second window. The tuples within the
window are evaluated every y seconds. Sliding windows can contain overlapping
data and the same event can belong to more than one sliding window.
Moving average model is probably the most sliding window approach to time
series modeling. The current moment is the average of the moments seen in the
past. The moving average can be used to identify interesting trends in the data.
Depending on the value we assign to y, the splicing can be with or without overlap
So, defining a window to apply the sliding model allow to to smooth the time
series, and highlight different trends. In fact, thanks to this windows we can
calculate different statistical values that indicate the progress of the datapoints
on the time. Some of them are the calculation of the maximum or minimum value
within the window, the average (i.e. moving average), the standard deviation and
other statistical values. So, sliding window is the way to restructure a time series
dataset in such a way that the machine learning models have a wider visibility
considering also previous data rather than considering a single datapoint.

2. Exponential smoothing: Exponential smoothing uses a similar logic to moving
average, but this time, a different decreasing weight is assigned to each observa-
tions. In other words, less importance is given to observations as we move further
from the present.

3. Tumbling Window: In a tumbling window, tuples are grouped in a single window
based on time or count. A tuple belongs to only one window. This method can
be applied, for example, for the computation of the average of a price of a stock
over the last five minutes, repeated every five minutes.

As already mentioned, another way to improve time series is to use data augmentation
techniques.

A taxonomy of time series data augmentation techniques was defined in [8] (Figure
2.10). They start the discussion from the simple transformations in time domain. And
then they discuss more transformations on time series in the transformed frequency
and time-frequency domains.
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Besides the transformations in different domains for time series, they also summarize
more advanced methods, including decomposition-based methods, model-based meth-
ods, and learning-based methods. For learning-based methods, they further divide
them into embedding space, deep generative models (DGMs), and automated data
augmentation methods (Figure 2.10).

Data augmentation techniques will be briefly explained below:

Figure 2.10: A taxonomy of time series data augmentation [8]

1. Time Domain: the elements of the time series are displaced to different time
steps than the original sequence. To do this we manipulate the original input
time series directly. Some example of time domains transformation are

• Slicing: The general concept behind slicing is that the data is augmented
by slicing time steps off the ends of the pattern

x′ = xϕ, . . . , xt, . . . , xW+ϕ

where W is the size of a window and ϕ is a random integer such that
1 ≤ ϕ ≤ T −W . Slicing in this way is also sometimes referred to as Window
Slicing (WS) due to the use of a window of size W and has the advantage
of preserve time dependencies.

• Permutation: refers to a method of rearranging segments of a time series in
order to produce a new pattern. It should be noted that permutation does
not preserve time dependencies.

• Time Wrapping: Time warping is the act of perturbing a pattern in the
temporal dimension. This can be performed using a smooth warping path
or through a randomly located fixed window. So, data wrapping re-samples
the input signal by a randomly selected factor and not preserve time depen-
dencies.
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2. Frequency Domain: Frequency domain transformations are transformations that
are specific to periodic signals, such as acoustic data. The following are common
methods of frequency domain transformations for data augmentation.

• Frequency warping: In audio and speech recognition, frequency warping is
a popular method of data augmentation and it is the act of perturbing a
pattern in the frequency domains, as in time domain.

• Fourier transform-based methods: augment by manipulating the data under
a Fourier transform. Gao et al. [9] proposed utilizing amplitude and phase
perturbations in order to augment in the frequency domain. This is done
by adding Gaussian noise to the amplitude and phase spectra found by a
discrete Fourier transform.

• Spectrogram augmentation:frequency warping data augmentation is per-
formed before conversion into a spectrogram. However, recently, a method
called SpecAugment [10] was proposed that augments the spectrogram data
itself. In order to augment the data, SpecAugment performs three key op-
erations on the spectrogram: time warping, frequency masking, and time
masking. In this way, SpecAugment is both a time domain and frequency
domain augmentation method.

3. Time-Frequency Domain: Time-frequency analysis is a widely applied technique
for time series analysis, which can be utilized as an appropriate input features in
deep neural networks.

4. Decomposition-based Methods: as a part of advanced data augmentation meth-
ods [8] Decomposition-based time series augmentation has also been adopted and
shown success in many time series related tasks, such as forecasting and anomaly
detection. The idea is to decompose a time series in order to generate new time
series.

5. Statistical Generative Models: Time series augmentation approaches based on
statistical generative models typically involve modelling the dynamics of the time
series with statistical models

As demonstrated in [8], performing data augmentation operations allows for improve-
ments during the learning phase and therefore to generate models that are able to
generalize and classify better.

Is important to note that some data augmentation methods improved the accuracy and
some methods were detrimental. As demonstrated in [11] for multivariate time series
classification for deep learning approach, the best way to augment data and extract
more information one single data-point is using time-domain transformation, such as
Slicing, Window Warping, in fact, as verified by them, this transformations tended to
have the most positive effects for each model while other, i.e. Frequency Wrapping had
significantly degraded accuracies.
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Chapter 3

State of the art

3.1 Driving Automation System

The continuing evolution of automotive technology aims to deliver even greater safety
benefits and automated driving systems (ADS) that, one day, can handle the whole
task of driving when we don’t want to or can’t do it ourselves.

Fully automated cars and trucks that drive us, instead of us driving them, will become
a reality.

The automotive industry worldwide invests enormous sums in the automation of vehi-
cles to make driving safer and more efficient, but also more comfortable.

According to the German Association of the Automotive Industry (VDA), the German
automotive sector will invest almost 68 billion Euros in electric cars, digitalization,
connected, and automated driving over the next three years [12].

Intelligent infrastructure with vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communications supported by advanced electronic driver assistance systems are
capable to achieve substantial reduction in accidents and death-rates thus making
Europe the by far safest traffic region in the world and the arrival of autonomous
driving will revolutionize the way people travel.

Autonomous mobility can become a $1.4 trillion market by 2040 in terms of car sales.
When considering the additional revenue from autonomous mobility services, the total
market value for autonomous cars and robotaxis can reach $2.5 trillion per year by
2040 [13]. In figure 3.1 it is possible to graphically see what has just been said.

The shift towards higher driving automation may suggest that inattention will not
be an issue for much longer, but unfortunately this will not be the case in the expected
future as fully automated driving is still a long way off.
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Figure 3.1: Market forecast of global autonomous cars and mobility services

Automated or “self-driving” vehicles are a future technology rather than one that you’ll
find in a dealership tomorrow or in the next few years. Researchers expect that humans
will continue to play a role in automated systems such as vehicles, even at higher levels
of vehicle automation.

Among the most important DAS that nowadays can be found on any car, there are the
Antilock Braking System (ABS), the Electronic Stability Control (ESC) and Traction
Control System (TCS).

DAS are strictly linked to the use of proprioceptive sensors, which are able to measure
most of the vehicle quantities, such as velocity, acceleration, wheel rotational speed
and so on.

Thereafter, in order to enhance even more the level of assistance given to the human
driver, exterioperceptive sensors, i.e. sensors that acquire measurements from the
external environment (road, other vehicles, traffic etc.), were introduced in a new kind
of systems, named Advanced Driver Assistant Systems (ADAS).

ADAS represent an evolution of DAS since they can help the human driver in per-
forming either some critical tasks, such as an emergency braking, or the most common
tasks, for instance maintaining a constant speed, parking and so on.

Indeed, the most known ADAS are Adaptive Cruise Control (ACC), Lane keeping Con-
trol (LKC), Park Assist (PA), Autonomous Emergency Braking (AEB).

ADAS constitute the first step towards the autonomous driving
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3.1.1 A Taxonomy of Automation

The Society of Automotive Engineers (SAE) devised a classification for the cars based
on the level of automation in turn based on the functionality of the driving automation
system features [14].

The two lower levels of driving automation (1 and 2) refer to cases in which the human
driver continues to perform part of the DDT (Dynamic Driving Task) while the driving
automation system is engaged. These are therefore referred to as “driver support”
features.

The upper three levels of driving automation (3 to 5) refer to cases in which the
automated driving system (ADS) performs the entire DDT on a sustained basis while
it is engaged. These are therefore referred to as “automated driving” features (or the
vehicles equipped with them).

• 0. No Driving Automation: the human driver performs all driving tasks.

• 1. Driver Assistance: driver is assisted while performing some tasks. Although
this, the driver is fully responsible of accomplishing every other tasks and moni-
toring the environment.

• 2. Partial Driving Automation: the system handles itself the acceleration, decel-
eration and steering. Still, the human driver will monitor the environment and
act if needed.

• 3. Conditional Driving Automation: the car is able to drive itself and monitors
the environment, but the driver must be ready to take control if required.

• 4. High Driving Automation: the car drives itself and occasionally asks for help
to the driver, but it is able to handle the situation even if the driver’s response
is inadequate.

• 5. Full Driving Automation: the car is fully able to drive itself. Each scenario is
correctly handled, so the role of the driver disappears.

These level definitions can be used describe the full range of driving automation features
equipped on motor vehicles in a functionally consistent and coherent manner.

The generic term “driving automation system” refers to any Level 1 to 5 system or
features that performs part or all of the DDT on a sustained basis.

While, we can say that a car has an automated driving system (ADS) if it belongs to
classes 3, 4 or 5. So, the term ADASes refer more to class 1 and 2 and do not pretend
to be substitutes of the driver, but assist the driver (indeed ADAS stands for Advanced
Driver Assistance System).
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Figure 3.2: SAE: Automation Levels

ADAS are systems to help the driver in the driving process. ADAS help the driver
by signaling dangers and helping in performing maneuvers, without taking the direct
control of the car (unlike Autonomous Driving Systems).

An ADAS faces those situations by drawing the attention of a distracted user (espe-
cially when the situation requires full attention of the driver), assisting the user while
maneuvering, warning the user if it is trying to perform a risky or illegal action and
provide a reasonable alternative.

3.1.2 Three Way of Distraction

In order to create a ADASes system, one of the most important aspect, to make the
system understand, is when the driver is distracted. This is possible by developing
specific classifiers able to identify distraction when occurs and so mitigate its effective
by modifying accordingly the strategies of the system or even by providing a direct
feedback to the driver.

A framework for discussing the sources of driver distraction is defined in [15] which tells
us that there are several types of distractions including cognitive, visual and manual
distractions, which may be distinguished from each other based upon the resources
required to perform the task. The sources are:

1. Visual: such as when the driver takes his/her ’eyes-off-road’ for some other task.
So, visual distraction occurs when the driver is looking away from the road scene,
even for a split second. EOR is one of the most common distractions for a driver.
Examples of activities causing EOR are adjusting devices in the vehicle (HMI),
looking towards other seats or outside. All generally result in the driver not
looking straight ahead, which is what he/she needs to be doing for safe driving.
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2. Manual: also called biomechanical distraction, in which the driver is doing some-
thing else in the car cabin with his/her hands not being on the steering wheel,
for example, answer a call or send a text message, grab food and eat, or grab a
beverage and drink, all while driving.

3. Cognitive: in which the driver is not processing the information required for
safe driving. More specifically, refers to the “look but not see” situations when
the drivers’ eyes are focused on the forward roadway, but his/her mind is not.
Cognitive distraction occurs when a driver is thinking about something that is
not related to the driving task. In the driving context, while visual distraction
can be summarized by EOR, cognitive distraction can similarly be viewed as
“mind-off-road” (MOR). Typically, cognitive distractions can result from fatigue,
conversation with a co-passenger, listening to the radio, or other similarly loading
secondary tasks that do not necessarily take a driver’s eyes off the roadway. This
makes it one of the hardest distractions to detect as there are no visible clues
whether the driver is distracted. Cognitive distraction is probably the most diffi-
cult type of distraction to assess because it is difficult to observe what a driver’s
brain (as opposed to hands or eyes) is doing. While also verbal distractions have
been reported in the scientific literature, they were not significantly associated
with accident responsibility [16]

The three way of distractions can occur independently or can co-occur while performing
an activity. Therefore, the crash risk is higher for multitasking activities.

Earlier driver distraction was defined to be associated with any secondary task (task
not related to driving), but this definition has changed over time with the development
of complex In-Vehicle Information System (IVIS) and handheld devices.

So, how to correctly identify whether the driver is in a distracted driving state and
to provide the necessary warnings for the driver to avoid potential safety risks, has
become one of the most concerning issues, also because it represents a starting point
for a good driving assistance system.

3.1.3 Ways to detect Driver Distraction

Driver distraction can be measured through many modalities due to the changes it
causes in driver behaviours.

Driver behavior detection using driver status data, driving data, psychological data
such as heart rate, pupil movement, vehicle acceleration or combination of them is
another proposed solution for estimating driver distraction or the level of the driver’s
cognitive load.

These data can be collected from car data buses or external sensors such as cameras
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and eye trackers. Deep learning and other machine learning methods use these data to
learn driving patterns and driver status.

There are various studies that have proposed different parameters to be used to de-
tect distraction and we can divide the various categories of measurements for driver
distraction detection and their descriptions in the following categorization:

1. Driver Biological and Physiological Measures: Measuring and inferenc-
ing from biological and physiological signals from the driver’s body constitute
a fundamental material that underlies the driver’s cognitive distraction status.
Physiological measures such as heart rate information, skin conductance, Electro-
cardiogram (ECG), electroencephalogram (EEG), galvanic skin response (GSR),
Electrooculogram (EOG), respiration, electromyogram (EMG) and Heart Rate
Variability and others, have also been used to detect driving distraction. Al-
though, as evidenced and reported by S Pradeep Kumar et al [18] there is
potential correlation to the EEG collected data and driver distraction. They, to
record the EEG signals, use a 40 channel polysomnography (PSG) device from
allengers provided with 21 EEG channels. More specifically, the latter study fo-
cused on 21 electrodes of the EEG because of its sensitivity to cognitive workload.
In this work the alpha and theta sub bands were considered for predicting the
normal and fatigue state of the drivers. So, they proved that occipital region and
temporal lobe are the most important factor to identify fatigue and distraction.
However, studies testing skin conductance and heart rate information showed
only a weak relationship between these measures and distraction. Indeed no sig-
nificant relationship was found between skin conductance or heart rate [17] and
driver distraction.

2. Vehicle Dynamics Data: Significant effects of driver distraction are observed
on driver’s vehicle control in recent research, such as drivers adapting to drive
at a slower speed to increase available response time when distracted, Longi-
tudinal Control Parameter and Lateral Control Parameter are significant under
distracted driving [19]. Chang Wang et al addressed the impacts of speed and
naturalistic visual distraction on driving performance on a real road [20].
Driving Performance as decision variables for driving distraction are observed by
making drivers perform additional secondary tasks such as a cell phone conver-
sation, co-passengers conversation, navigation control, and playing a radio with
varying workload driving in a simulator and real environments [21] [22].
As described by Kentaro Lio et al in [23] common measures of driving per-
formance for detecting distraction are speed, lateral control, and reaction time.
More specifically, in the context of visual distraction, drivers generally slow down
when distracted by a visual stimulus, in fact lower driving speeds and posted
speed limits were associated with phone handling [23] . This can be explained
as a compensatory mechanism for the perceived risk, which can be decreased
through reduced speed. Generally, visual distraction impairs lateral control be-
cause the driver needs to compensate for errors made when taking the eyes off
the road, which leads to larger deviations in lane positioning and furthermore
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steering control is also reported to be less smooth than in normal driving.
Reaction time is evaluated by several measures such as Stopping distance, Pe-
ripheral Detection Time (PDT), and Driver Response Time (DRT), Foot Transfer
Time [24].
Sebastian Zepf et al [25] use vehicle dynamics data to calculate higher level fea-
tures, such as number of crashes and number of infractions. For number of
infractions they considered exceeding the maximum allowed speed, moving too
slow (<50% of the allowed speed), and driving out of the lane as infraction cases.
Another important determining factor coming from driving performance is that
drivers tend to increase the distance to the leading vehicle in the car-following
scenario when they engage in cognitively demanding secondary tasks [26]. They
showed a significant decrease in situational awareness due to cell phone use com-
pared to routine driving, which was in line with reports of drivers missing signs
and losing track of their location while engaged in a secondary task.
This suggests that drivers usually compensate for distraction induced by a sec-
ondary task with driving parameters.
A recent research by Johan Engström et al. [27] suggest us that driving under
cognitive distraction increased time and increased steering angle variance in the
time course from onset of steering control to lane change and increased steering
angle variance in the time course after lane change.
Accordingly to this research, we can say that both cognitive and visual loads
affect driving performance.

3. Driver Behavioral Measures: mostly identified by image and audio processing
techniques such as eye data, hands detection, head rotation, head nodding, facial
features expression, voice activity and so on.The driver behavioral measures are
non-intrusive, real-time and fast at detecting the onset of abnormal driver states.
Lisheng Jin et. al [19] use pupil diameter, horizontal and vertical fixation angles
and Blink frequency as driver physical measures.
Trivially, the use of features such as head-pose and head-orientation could be a
crucial factor in identifying visual distraction. However, they reported that this
method has a high potential for false positives. This is because, even if a driver’s
head is tilted to the side, his eyes could still be looking on the road. Therefore
it becomes necessary to add data of the eyes to those of the head to get more
information. Eye data, for example, has a number of features like fixation dura-
tion, blink percentage, gaze deviation, Percentage of Eyelid Closure, and others.
Hence, observing one or all of these features will depend on the purpose and re-
quirement of the system. Imen Jegham et al [28] implemented driver distraction
detection and classification using colour and depth map data from the Kinect
sensor. Eye behaviour that is gaze detection and blinking, arm position, head
orientation, and facial expressions are merged together and fed into a classifier
for accurate sorting. For example, gaze tracking is the technique that allows esti-
mating the direction where a person is looking at and from it we can identify the
cognitive distraction [29]. As described by Agapito Ledezma et al [30] this prob-
lem, generally, can be faced through two different methods: Appearance-based
methods rely on eye appearance where gaze estimation consists of extracting fea-
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tures from the eye images and learns a mapping function that relates to the eye
image features and gaze’s positions; Model-based methods rely on a geometric
eye model representing the structure and function of the human visual system.
All of them refers to computer vision techniques. In many recent researches
already pre-trained tools are used for the extraction of features such as Open-
Face [32], , a pre-trained computer Vision tool which in turn is based on OpenCV
an opensource library for computer vision. Papakostas et al. [31], for example,
use OpenFace to extract from video the head-pose, eye gaze information, facial
landmark coordinates and action unit (AU) presence as well as intensity values.

3.2 Distracted Driver Machine Learning review

In recent years, ML algorithms have been used for various purposes such as biodiesel
research [33], Measuring and modeling the motor system [34], and Coronavirus disease
(COVID-19) cases analysis [35]. Furthermore various approaches have been used to
classify driver distraction in recent years.

A substantial amount of research has been conducted on supervised machine learn-
ing algorithms for distraction detection and all of them are characterized by their
input data, their ground truth definition of driver distraction, and machine learning
approach.

In general, input sources include driving behavior, head and eye tracking, and/or driver
physiological measures. Prior algorithms have used one of two types of ground truth:
binary (e.g., distracted cases and normal driving cases) and multiclass (e.g., cognitively
distracted cases, texting cases, and normal driving cases).

Algorithms that leverage multiple sources of input and multiple classes of ground truth
have the most power for inference because supervised machine learning algorithms can
only learn from the data and labels provided in their training datasets.

There are several machine learning approaches including Support Vector Machines [36],
Bayesian Networks [37], Decision Trees [38], Random Forests [39], and deep neural
networks.

Hina et al. [46] presented the functionalities of an alternative ADAS. In this research,
they modeled the driving context using ontological approach. The values obtained from
a simulation are taken and passed onto the ontological template in order to produce
a real-time driving situation in which the actual values are those obtained from the
simulator.

After, machine learning is invoked to identify the sampled driving event. In more
specific terms, they built a neural network with one hidden layer having 1,000 hidden
neurons and a learning rate of 0.001, obtaining an accuracy of 75%.
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McDonald et al. [47] analyze a set of driver performance (e.g., brake force, lane offset,
speed, and steering angle) and physiological data (e.g., breathing rate, heart rate, and
perinasal perspiration) using advanced machine learning approaches. In this research,
they testing different machine learning algorithms including Random Forest, Decision
Tree, Naive Bayes, SVM with linear kernel function and with radial kernel function,
and some Neural Network architecture trained through data collected from 48 partici-
pants using a driving simulator.

Yanli Ma et al. [22] selected forty participants to conduct the driver distraction
experiment when operating IVIS, and the data of driving performance indicators such
as eye movement, speed, were collected. They create a real-time detection of distrac-
tion system based by using support vector machine, and three kernel functions of the
model were conducted comparative analysis and validation. The results show that
SVM models can effectively evaluate the degree of drivers’ distraction. At the same
time, when the Radial Basis Function is used as a kernel function, the accuracy for
recognizing driver distraction is 89.9%

Thanks to the availability of computational power and the emergence of big data,
deep learning methods have recently received lots of attention. Referring to the trans-
portation field, deep learning has applied to several areas including macroscopic traffic
conflict prediction [40] [41], transportation planning [42], traffic surveillance and con-
gestion detection [43], behavior prediction [44] and signal control [45].

In the context of driver distraction there are many recent studies using deep neu-
ral networks and various feature sets as inputs.

Kouchak et al. [53] conducted an experiment in eight different driving scenarios and the
same road to produce an artificial intelligence-friendly dataset and used this to train a
traditional neural network and a multilayer neural network in order to classify driving
data to eight groups. Based on our observation and collected data in this experiment,
driving context has an effect on the severity of driver distraction. It means, doing
a distractive task in adverse conditions results in a higher level of driver distraction
and has a more negative effect on the driver’s performance. As a result, we believe
that detecting the context of driving and driver distraction status together provides
more valuable information about the cognitive load and distraction level of the driver
compared to methods that only detect if the driver is distracted or not. They reached
93% test accuracy using deep neural networks.

Tamas et al. [54] propose a new three-part framework for driver distraction detection.
A dataset of images with a variety of driver’s ethnicity, gender, and camera positions
was used in this framework. The first part is a convolutional deep neural network that
is used for high abstracted feature extraction. The second part is a max-pooling layer
that decreases the dimension of features, and the last part includes six fully connected
layers and a SoftMax layer. The best test accuracy was 95% and the average accuracy
was 80% per class. This system uses a multi-class classification process to map the in-
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put observation to a driver state. This approach needs some cameras to collect driving
data. In fact, our approach detects driver states, distracted and not distracted, using
Can-bus data and a front camera.

Li et al. [49] discuss a lane detection method using deep neural networks. Two deep
neural networks were used in the model. A multitask deep convolutional network has
been used to detect the target considering the region of interest. A recurrent neural
network, which is adapted to be used as structured visual detection, is another deep
network that’s used in this model. The first network models lane structures, and the re-
current neural network detects the lane boundaries without any prior knowledge. Both
proposed networks outperform conventional detectors in the practical traffic scene. Im-
ages of the driving environment were used as inputs of these two deep networks, so
they can be used in cars that are equipped with cameras such as autonomous cars.
This model completely relies on the collected data by external devices.

Botta et al. [50] proposed a non-intrusive approach to detect visual and manual distrac-
tion based on a Single Layer Feedforward Neural Network (SFLN). They considered
as features vehicle dynamics data and environmental data, without using eye-tracker
information. First of all they carried out a phase of extraction of the characteristics
with a moving average that detects average, std, min, max, etc. Finally, they propose
an original approach which benefits from matrix sparsity, showing lower computational
times with respect to standard implementations with a single layer feedforward neural
network trained through pseudo-inversion. Moreover, theirs genetic based technique
outperforms the usual one for the majority of the considered subjects.

The detailed data from the NDS SHRP-2 Wildlife Driving Study was analyzed to
obtain information on disability and distracted driving by Arvin et al. [51] . The risks
associated with carrying out activities other than driving are quantified and discussed
in terms of critical safety events. By monitoring driver biometrics (in terms of dis-
traction), vehicle movements and driving volatility after a phase of extraction of the
characteristics to obtain volatility indices at the event and temporal level (i.e. velocity
and variations in longitudinal and lateral acceleration). Finally, the raw data and the
extracted functionalities are fed into the deep learning phase. Deep Neural Net (NN),
Convolutional Neural Net (1D-CNN), Long Short-Term Memory Recurrent Neural Net
(LSTM RNN) and 1DCNN-LSTM models are developed to classify events as basic or
critical events and evaluate performance models. They reported that 1DCNN-LSTM
outperforms other deep learning methods presented and can detect abnormalities in
driving, which can lead to crashes and near misses.

As reported in a very recent research by Kashevnik et al. [52], who have done a lit-
erature review and a framework to address the problem of driver distraction, at the
moment there are no non-intrusive way to measure the driver mental condition. Using
the intrusive methods are not applicable for the drivers since every time the driver
start his/her trip it is uncomfortable to wear some devices. This is the starting point
and the overall objective of our research in this thesis.
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Dataset Description and Analysis

4.1 Driving Simulator and Data Collection

Within Use Case 2 of the Next Perception Project (Section 1.2), the Demonstrator
UC2D1 will be involved in Pilot 1 as a Driving Simulator by RE:Lab. The pilot will
focus on the evaluation of the demonstrator’s performance in monitoring and measur-
ing the Driver Complex State (DCS), in particular looking at the technical feasibility,
efficiency, accuracy, and user acceptance.

In the first cycle, the pilot will focus on collecting data needed for the development
of the monitoring solutions and each of the modules to be integrated into the Driving
Simulation Engine; its evaluation phase will focus on technical feasibility and will take
place in a simulation environment.

The potential challenges identified in the context of the pilot, at a technology level,
are:

1. The combination of a set of different monitoring components and smart sensors
(e.g., camera-based distraction and emotion monitoring, vehicle data-based cog-
nitive and behavioral distraction monitoring, etc.) to develop an unobtrusive
Driver Monitoring System that will provide a reliable and accurate “fitness to
drive” condition. The goal will be to infer a combined cognitive/emotional state
of the driver, and also the activities and positions of occupants inside the vehicle
cockpit (including the driver).

2. The coverage of more scenarios, in particular two, situations and conditions, with
respect to the current state of the art (e.g., the combined impact of cognitive
states and emotions at driving).

3. The use of heterogeneous data sources.
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4. The improvement of monitoring systems performances against the systems cur-
rently on the market.

5. The design and development of appropriate multimodal and interactive HMI
solutions for Automated/Autonomous Driving Functions (ADFs), which take into
account the overall state of the driver, including emotions (emotional design).

The pilot will take place in Reggio Emilia, Italy, at RE:Lab’s facility where the driving
simulator (based on SCANeR Studio 1.7 platform, including features for sensors sim-
ulation, ADAS, and automated driving functionalities) is settled, with real users and
will follow two predefined scenarios of simulation.

To highlight the decisive role of the DMS and to transparently communicate the main
operating logic of this system, a dashboard has been prototyped that provides at a
glance the indication of the output of each component of the Driver’s Complex State
(emotional, cognitive, and visual distraction, excitement) in a given instant, that is, it
allows to identify the trends of the outputs of the different classifiers.

Together with these trends, the dashboard displays the Fitness to Drive index instant
by instant: since this index is linked to the various components of the Driver Complex
Status, through the dashboard it is possible to understand why the driver is judged
unsuitable by the system or how suitable for driving, i.e. it is possible to see the link
that exists between the Fitness to Drive index and the various classification outputs
relating to the driver’s status.

We emphasize here that the dashboard is not intended to be used by the driver, but
is a demonstration tool, particularly useful for developers for demonstration purposes
and to verify the operation of the various software modules and their integration.

The Next Perception Driver Monitoring System, in fact, integrates several classification
modules. For demonstration purposes, it is useful to see the output of this integrated
system by varying the input data.

As part of a hypothetical demo, it is imagined that starting from test data appropriately
collected, it can be demonstrated through the dashboard how the Driver Monitoring
System returns the expected results in terms of the Fitness to Drive index.

Pilot 1 involves 26 participants and is led by RE:Lab. Besides leading the pilot, RE:Lab
will be responsible for the test setup and the integration of the modules into the
simulator. Each scenario was approximately 35 mins long.

A CSV file was written from the simulator to store all data and an mp4 file was
recorded to generate a front RGB video for each participant. The frequency of vehichel
dynamics data collection was 20 Hz (1 data-point each 0.05s), which is the output rate
of the vehicle CAN bus while the frequency of RGB camera data collection was 30 Hz
(1 data-point each 0.33s).
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Figure 4.1: RE:Lab’s Driving Simulator

The test focuses on eyes-off-road condition and cognitive distraction, and in each phase
in which there is a distraction, while the user drives carefully, at random time intervals,
8 different periods of distraction are performed.

The test is divided into 4 parts (each of about 8 minutes):

1. Baseline B: safe driving, the only task is to drive and there is no kind of dis-
traction;

2. Visual Distraction V: Participants were asked to select on the HMI the red
figure out of a total of 4 different colored figures; the user wait for an acoustic
signal and when it occurs, turn around with their head to interact with the HMI
(causing visual distraction)

3. Cognitive Distraction C: participants were presented with a sequence of num-
bers, and were asked to indicate when the current number matched the one from
n steps earlier in the sequence. For our experiments we set N=2. This is the so-
called N-Back test. This distractor aimed to challenge exclusively the Cognitive
capabilities of the subjects while driving. N-Back is a cognitive task extensively
applied in psychology and cognitive neuroscience, designed to measure working
memory.

4. Cognitive and Visual Distraction D: users must listen to a sequence of 7
numbers dictated by the system, and at the end, they must turn around and
interact with the HMI by selecting between 4 possible digits shown, the one
heard.

The order in which the different phases were followed is different. Specifically, the
simulator divides the test into 4 different orders (BCVD, DBCV, VCBD, and DVCB)
and randomly chooses the execution order for each participant.
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The driving circuit is shown in figure 4.2.

Figure 4.2: Driving Circuit

All the time instants in which there is a visual distraction (eyes-off-road) and in which
there is cognitive distraction are manually annotated in different variables, where 0
indicates that in that frame there isn’t a distraction while 1 indicates that there is a
distraction. So that they can be used as labels for the training phase.

At first, the tests of some users for which the data are damaged (either for the video or
for the vehicle dynamics data) were eliminated (for example users 1 3, and 12 have a
missing part of video or 9 and 17 that have vehicle dynamics recorded data damaged)

A serious problem was encountered with acquired data. During the Baseline driving
phase, in which the only task should be driving, some users, due to boredom, spoke
to other people in the room that was not well isolated. In order to reduce the bias
induced by these ’incorrect drivers’ some of these have also been eliminated.

4.1.1 Vehicle Dynamics Data

The vehicle dynamics data are retrieved through Controller Area Network (CAN)-Bus
in cars while simulators have inbuilt systems for the same. They are focused on in-
vehicle processing of information about the driver and the vehicle and were sampled
at 20 Hz so a value is recorded for each variable every 50 ms.

Firstly we have eliminated all unreal features such as the absolute position (x,y, and
z) in the simulator environment and all the irrelevant features such as the GearBox
Mode, Engine Status, and Clutch Pedal which respectively were useless that in the
simulator environment GearBox Mode was always automated (so no clutch pedal too)
and engine status was always on.

The remaining variables sampled in this study from Vehicle Dynamics Data are given
in Table 4.1 with a short description and unit of measurement. As you can see, Ve-
hicle motion (acceleration and speed) is generally described in terms of the velocities:
forward, lateral, vertical, roll, pitch and yaw in the vehicle-fixed coordinate system
as referenced to an earth-fixed (inertial) reference frame, respectively u (longitudinal
velocity), v (side velocity), w (normal velocity), p (roll velocity), q (pitch velocity) and
r (yaw velocity).
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VARIABLE NAME DESCRIPTION UNIT OF MEASUREMENT

Accel The acceleration of the vehicle’s CoG frame.
Specified in x, y, z, heading, pitch, roll. m/s2

accelPedal accelerator pedal position. Float from 0 to 1,
0 is depressed

brakePedal brake force Float from 0 to 1,
0 is depressed

engineSpeed engine speed rad/s

Speed The speed of the vehicle’s CoG frame in the chassis referential.
Specified in this order heading, pitch, roll. m/s

steeringTorq Steering wheel torq, positive to the left. N/m

steeringWheelAngle Steering wheel angle, positive to the left. rad

Table 4.1: Vehicle Dynamics

A vehicle is modelled in two main parts: the unsprung mass that takes into account for
the mass of the wheels, part of the suspension and other component directly connected
to them, and the sprung mass that is basically the vehicle total mass supported by the
suspension.

The Society of Automotive Engineers (SAE) has introduced standard coordinates and
a notation to describe vehicle dynamics that are widely used (figure 4.3). Here the
earth-fixed reference frame’s axes are referred as X, Y and Z and the vehicle reference
frame’s axes as x, y and z. The angles are roll, pitch and yaw.

Figure 4.3: Vehicle Axis System (SAE)

4.1.2 Road Information

External monitoring sensors include external sensors that monitor the road and obsta-
cles outside the vehicle. As for Vehicle Dynamics, they are collected using the CAN
bus in the driver simulator (and from the external sensors in a real environment such
as a camera).

These sensors elaborate the raw data in the respective hardware modules, and com-
municate the processed data directly to the ECU, in order to collect extra vehicle data
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according to the road network and status for each wheel of the vehicle.

The processed data allows us to reconstruct an abstract view of the external world.

Firstly we eliminated unreal variables (that do not exist in a real environment) such
as ground Index, laneType under the wheel, the id of the object under the wheels, the
IDs of the Roads, the IDs of the lanes, the Road Gap that indicates the lateral distance
of the vehicle regarding the middle of the road or the absolute position of each wheel
in the vehicle frame.

Also, unnecessary variables were deleted such as grip for each wheel. The remaining
variables given by Road Information Data are reported in Table 4.2 with a short de-
scription and unit of measurement

VARIABLE NAME DESCRIPTION UNIT OF MEASUREMENT

rotation Rotation of each wheel around the
X, Y, and Z-axis. rad

speed The angular speed of each wheel. rad/s

angle The absolute angle of this wheel. rad

vhlSx LSR (Longitudinal Slip Ratio) of the wheel. rad

vhlDelta
Wheel Slip Angle (angle in radians between
actual speed vector of the wheel
and their orientation).

rad

laneGap The lateral distance of the vehicle regarding
to the middle of the recognized lane. m

roadAbscissa The curve distance of the vehicle along
the current road. m

roadAngle The angle between the axis of the road,
and the heading of the vehicle. rad

Table 4.2: Road Information

It is important to note at this point how preprocessing operations were carried out
to make the features usable and meaningful.

For example for the roadAngle variable. It represents the direction that the vehicle is
taking with respect to the road; the angle is measured precisely with respect to the
direction that the vehicle is taking and therefore is composed of oscillations between
−π and +π (−180◦, +180◦). Each change of direction indicates a jump between - and
+, as you can see in figure 4.4a.

So the goal is to eliminate this oscillation in such a way as to obtain the oscillation of
the vehicle with respect to the road insensitive to the fact that the vector of the road
and the vehicle can be rotated of 180◦.

To do this, we have subtracted π in all those points where the value is greater than π/2
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(a)

(b)

Figure 4.4: Two roadAngle plot of the same driver (a) Data are not very significant and
do not reflect the induced phases of distraction (b) After processing, the same feature
has interesting correlations with visual distraction, as they correspond to points where
one has moved (with respect to the center of the road) without carrying out a maneuver
due to the circuit.
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and instead added π in all those points where the value is less than than −π/2. The
obtained feature is significant with visual distraction, as you can see in figure 4.4b.

Another feature that caught our attention was laneGap. This represents the lateral
distance of the vehicle regarding the middle of the recognized lane.

This feature is significant with the visual distraction detection because whenever there
is a visual distraction we will most likely get closer to the recognized line or even pass
it, then the distance increases until the next line is recognized (if passed the old one)
and in this case, there is a jump.

Therefore, these jumps help to understand when the driver is not looking forward.
However, it cannot be used as the only information as lane changes deriving from exits
or roundabouts (present in the motorway context of the simulator) appear to have the
same meaning in the data, see figure 4.5a

It is therefore necessary to discriminate through the set of all the features available
when the change of line is due to the road circuit or to a distraction. In order to make
it more meaningful, it has been transformed so that the value is only positive and
carries the peaks to the points where there is a lane change, see figure 4.5b.

(a)

(b)

Figure 4.5: (a) Data is very confusing and misleading (b) After processing, the same
feature has interesting correlations with visual distraction, as they correspond to points
where drivers exceed the lane and invade the adjacent lane
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4.1.3 Internal Camera

In order to detect features from the video, was used a trained facial recognition system.
A facial recognition system is a technology capable of identifying or verifying a person
from a digital image or a video frame from a video source.

The idea of facial recognition technology firstly appeared in 2014, when Facebook an-
nounced its DeepFace.
Now, in 2021, most facial recognition algorithms exceed the most accurate algorithm
from late 2013.

There are several face recognition algorithms, some of them are:

1. MediaPipe [55]: is one of the most widely shared and re-usable libraries for
media processing within Google based on machine learning. It is a framework
for building multimodal(e.g video, audio or any time series data),cross-platform
(i.e Android, IOS, web, edge devices) applied ML pipelines. Some of notable
applications of MediaPipe are Face Detection, Face Mesh, Multi-hand tracking,
Hair Segmentation, 3D Object Detection and Tracking

2. MMPose [56]: open-source toolbox for pose estimation based on PyTorch. MM-
Pose implements multiple state-of-the-art (SOTA) deep learning models, includ-
ing both top-down & bottom-up approaches

3. Deepgaze [57] : is a library for human-computer interaction, people detection and
tracking which uses Convolutional Neural Networks (CNNs) for face detection,
head pose estimation and classification. Deepgaze is based on OpenCV and
Tensorflow, some of the best libraries in computer vision and machine learning.

4. OpenFace 2.0 [58]: a tool intended for computer vision and machine learning
researchers which is capable of very accurate facial landmark detection, head
pose estimation, facial action unit recognition, and eye-gaze estimation. The al-
gorithm behind OpenFace was based on OpenCV and uses Convolutional Neural
Networks.
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(a) (b)

Figure 4.6: (a) AUs monitored by OpenFace 2.0 (b) Yaw,Pitch and roll of head-pose

The tool that we have used is OpenFace 2.0 as it is very fast, and also returns, unlike
the others, in addition to the head pose and eyes gaze, the Action Units (facial muscle
movement).

The algorithm behind OpenFace, explained in [58], is briefly described below. The face
is detected by the Multi-Task Convolutional Neural Network (MTCNN) face detector,
which was trained with WIDER FACE and CelebA.

In contrast to other facial detectors, which use HoG-SVM, Haar–Cascade, etc., MTCNN
can detect frontal, profile, and highly-occluded faces by using a single detector. The
bounding box of the detected face is used to detect facial landmarks and facial behavior
recognition.

The Convolutional Experts Constrained Local Models (CE-CLM) detect 2D Cartesian
coordinates of 68 facial landmarks. The CE-CLM internally has data on the 3D coor-
dinates of facial landmarks, and head direction (yaw, pitch, and roll) is estimated by
the perspective-n-point algorithm. Using facial landmarks detected by CE-CLM and
HoG features extracted from the aligned detected face image of 112×112, the intensity
and presence of facial Action Units (AU) are estimated by support vector regression.

Output features provided by Openface 2.0 include yaw, pitch, roll, (head Rotation,
figure 4.6b , Eyes gaze direction (averaged for both eyes and converted into more easy-
to-use format), and Facial Action Unit (AU) presence as well as intensity values.
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We experiment with both individual and combinations of those features and we con-
clude that AU intensity values were the ones encapsulating the richest amount of in-
formation for our scope. To describe AUs we first need to introduce the Facial Action
Coding System (FACS).

FACS is a framework designed to group facial movements based on their appearance on
the human face. This grouping depends on slight instant changes in facial appearance
caused by individual facial muscles. AUs are the individual units used by FACS to
code complex facial expressions.

Thus, AUs can be seen as a mid-level representation of facial expressions, providing a
higher level of information than just a group of facial landmarks but being much more
descriptive than an affect-based classification or regression model.

Openface provides AU intensity in the form of a continuous variable for 17 different
AUs. Intensity values may range from zero (AU is not present) to five (maximum
intensity). The AUs monitored by Openface can be seen in Figure 4.6a. For example
for AU26 and AU45, corresponding to mouth opening and eye blink was estimated to
be higher than a value between two and three.

To make the head pose even more precise, and given the visual distancing context, in
which the head turns to perform a secondary task, it was decided to create a single
variable starting from Yaw, pitch and roll.

In this case we have calculated the sum of the squares of the radians of the Yaw and
the Pitch (excluding the roll that hardly happens in the car environment). In this way
a more precise value is obtained which indicates a degree of rotation of the head.

In addition, cleaning operations were also carried out for the AU. In this case the
intensity value of each AU was set to 0 if the general confidence of OpenFace did not
exceed 0.8.

Furthermore, the intensity value is multiplied by its specific confidence value so as to
increase or decrease it based on the associated confidence.

4.2 Merging: Time Lagged Cross-Correlation

One problem encountered was about synchronizing of video which did not start at
the same time of vehicle dynamics data recorded. As described [59], there are many
techniques to measure synchronous between time series data: Pearson correlation, time-
lagged cross-correlations, dynamic time warping, and instantaneous phase synchronize.

In this thesis, a time-lagged cross-correlation method was used between the annotated
visual distraction columns and the Head Pose extracted from OpenFace.
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Time lagged cross-correlation (TLCC) can identify directionality between two signals
such as a leader-follower relationship in which the leader initiates a response that is
repeated by the follower.

There are a couple of ways to investigate such a relationship including Granger causal-
ity, used in Economics, but note that these still do not necessarily reflect true causality.

To allow that shifting, we compare the labeled data on visual distraction with the
degree of rotation of the head found in OpenFace, and through a 1D Gaussian filter,
the TLCC gets the offset value between the video and the vehicle dynamics data.

In our case, as shown in figure 4.7, TLCC is measured by incrementally shifting the
HeadPose time series vector (blue) and repeatedly calculating the correlation between
it and target Visual Distraction (red) and after selecting the offset at the peak of the
correlation.

If the peak correlation is at the center (offset=0), this indicates the two-time series is
most synchronized at that time. However, the peak correlation may be at a different
offset if one signal leads another. We have implemented a cross-correlation function
using pandas functionality.

Figure 4.7: Time Lagged Cross-Correlation: alignment of target of visual distraction
and the head-pose.

Subsequently, the various sources of information were merged, after downsampling of
video data, in order to use it as a single dataset composed by 151 features.

53



Chapter 5

Features Selection and Extraction

5.1 Features Selection

Feature selection is a process where you automatically select those features in your data
that contribute most to the prediction variable or output in which you are interested.

One of the key factors for feature selection is to eliminate features that are not infor-
mative, which involves selecting features that have less correlation to each other and
high correlation with class labels. It helps to remove redundant, misleading, or useless
features which do not contribute to the model performance.

Furthermore, perform feature selection on the data before using them for training ma-
chine learning models allows to reduces overfitting, in that less redundant data means
less opportunity to make decisions based on noise, but also improves accuracy, in that
less misleading data means modeling accuracy improves and also reduces training time,
in that less data means that algorithms train faster.

There are two main types of feature selection techniques: wrapper and filter.

1. Wrapper: This methodologies use a learning algorithm in a selection process to
detect features that are useful in the context of other features: a feature subset of
all features is searched which enhances the performance by the learning algorithm.

2. Filter: This methodologies evaluate the goodness of each feature according to
some criterion and select features ranked with high scores. Filter-based feature
selection methods use statistical measures to score the correlation or dependence
between input variables that can be filtered to choose the most relevant features.

Finally, there are some techniques called Intrinsic that are when there are Algorithms
that perform automatic feature selection during training. For example with a decision
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tree.

The wrapper technique has an issue when features are strongly correlated with each
other; as a result, when one feature is garbled, the other correlated feature is able to
provide the necessary information to the model. This results in lower importance being
given to the correlated features.

This problem has been avoided by clustering correlated features and choosing one
feature from each cluster for the correlation task as it is able to provide similar infor-
mation to the other features in its cluster.

In this thesis, hierarchical clustering was performed on the features using Spearman
rank-order correlation and a threshold was chosen to pick a single feature from each
cluster.

When features are collinear, permuting one feature will have little effect on the model’s
performance because it can get the same information from a correlated feature.

One way to handle multicollinear features is by performing hierarchical clustering on
the Spearman rank-order correlations, picking a threshold, and keeping a single feature
from each cluster.

First, we plot a heatmap of the correlated features (figure 5.1) and after, hand-select
an appropriate cut-off on the dendrogram ward in order to collapse repetitive features.

As shows figure 5.1 there are 3 main cluster, and below are shown manual selected
features for each sub-cluster based on recent research criteria highlighted by recent
research reported in Section 3.1.3.

The orange one shows a very strong relationship between the variables it contains,
this is because for example steering torq is a feature derived from other information
which in this specific case has a very strong correlation between them. For this cluster,
only the speed vector y and the steering torq.

Going to the end we see that also the last cluster shown (the red one in the figure)
contains strong correlations since we are correlating values referring to the front wheels
with more refined features that calculate the steering angle. In fact, the wheel angle,
the steering wheel angle, and the acceleration vector y were chosen from the second
cluster.

For the remaining features, it was not possible to further specify other strong cor-
relations because there are values that are not strictly correlated. In fact, they are
collapsed into a single large cluster, represented with the color green.

To make a selection of some features, it was necessary to choose a cut point, and for
each sub-cluster created, a variable is chosen.
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Figure 5.1: Hierarchical clustering and heatmap using Spearman rank-order correlation
on all features
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This large cluster with the cut at a certain level we can further subdivide it into sub-
clusters.

Starting from the first sub-cluster we obtain, and going to see the heatmap as well, we
realize how there is a strong correlation between the acceleration pedal, the acceleration
and speed vectors x, and the Longitudinal Slip Ratio of the wheel 0 and 1 (i.e. front
wheels) but since the latter is the slipping behaviour of the wheel of an automobile it
can be replaced by the acceleration and speed vector x and the accelerator pedal.

Furthermore, it is still possible to note in this sub-cluster how the features of the
acceleration vector x and engine speed are strongly correlated. This is trivially true
as the acceleration vector x depends on the engine speed and incorporates it. In fact,
even the latter was discarded.

Seeing again the next sub-cluster in the dendrogram and heatmap we see a much
weaker correlation between the features except for the road Abscissa and the speed
pitch. Between the two it was decided to discard the road Abscissa as the speed pitch
represents a higher-level feature.

The vector z of the speed (i.e. the lateral one) is correlated, albeit slightly, with the
direction of the eyes and the road angle. However, being weak correlations, it was
decided to keep them all.

Continuing we see a sub-cluster made up of 5 features that refer to the Action Units
recovered from the front camera. Let’s see how for example AU10 is somehow correlated
with AU12 (in fact in the heatmap the correlation takes on a light green color).

This is trivially given by the fact that the two action units refer to muscle movements
of the lips, respectively upper lip raiser and lip corner puller, very similar to each other
and therefore tend to occur together. In fact, noting within the heatmap we can see
how even AU25, which always refers to the lips, although it has not been clustered
together with the others, takes on a greenish color in correspondence with AU10 and
AU12.

Furthermore, since the Action Units have continuous values between 0 and 5 which
indicate the intensity of the reference action, and since it is possible that more than
once they are worth 0, the correlation between them is not very consistent since using
a simple correlation of spearman two vectors containing many zeros and a few different
values would be very correlated. We have this problem with all the features that tend
to remain 0 for a long time and only take effect at times (such as the brake pedal).

In recent research, as reported in Section 3.1.3, the correlations between the Action
Units and distraction have been analyzed. Some of these appear to be more signif-
icant than the others but in general each can contribute to the identification of the
distraction.

Due to this and also to the fact that the AUs indicate different facial muscle movements,
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it was decided to keep all the Action Units extracted from the video.

Continuing with the features in the large red cluster, thus excluding the AUs, we
still see the correlation between, for example, the head pose and the gaze of the eyes
considered absolutely relative to the camera (clearly obvious).

Although there is this correlation, we have chosen to keep both variables as in reality
they express two completely different and partly independent features (for example I
can look away without turning my head or vice versa I can keep my gaze fixed by
turning my head).

Two further features that have attracted attention are the acceleration vector z and
the LSR of the rear wheels. They seem to belong to the first cluster (i.e. the orange
one) since the correlation corresponding to its features is higher (in fact they tend to
be green). For this reason, we have chosen to keep only the acceleration vector z.

Other features that we encounter, all have a low correlation between them and therefore
we have chosen to keep them all. In addition, many of these are being used in recent
research to identify distraction. Some of the latter are, in fact, speed and acceleration
roll, steering wheel speed, lane gap, and brake pedal.

Furthermore we have applied an automatic feature selection through a function called
leaders. It works by going, for each cluster (cut at the threshold level), to returns the
root nodes in a hierarchical clustering corresponding to a cut defined by a flat cluster
assignment vector, and for each flat cluster of clusters, this function finds the lowest
cluster node in the linkage tree such that:

1. Leaf descendants belong only to flat cluster

2. There does not exist a leaf that is not a descendant and that also belongs to a
cluster.

The table 5.1 shows in the first column the set of all features ordered by linkage
function and in the second and third columns there is the name of the features selected
in correspondence to the first column, respectively for the leaders and for those selected
manually

All Features Order By Clustering leadersSelection manualSelection

ev_ws_roty0 ev_ws_roty0
ev_ws_rotx2
ev_ws_roty2
ev_ws_rotz2
ev_ws_rotx3
ev_ws_rotz3
ev_speed_y ev_speed_y
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All Features Order By Clustering leadersSelection manualSelection

ev_ws_vhlDelta2
ev_ws_vhl Delta3 ev_ws_vhl_Delta3
ev_steeringTorq ev_steeringTorq
ev_ws_vhlDelta0
ev_ws_vhlDelta1
ev_accelPedal ev_accelPedal
ev_ws_vhlSx0
ev_accel_x ev_accel_x ev_accel_x
ev_ws_vhlSx1 ev_ws_vhlSx1
ev_gearEngaged ev_gearEngaged
ev_speed_x ev_speed_x
ev_engineSpeed
AU20_r AU20_r AU20_r
AU10_r AU10_r
AU12_r AU12_r
AU06_r AU06_r
AU07_r AU07_r
gaze_angle_y gaze_angle_y
pose_RxRy pose_RxRy
AU23_r AU23_r AU23_r
AU15_r AU15_r AU15_r
AU17_r AU17_r AU17_r
AU45_r AU45_r AU45_r
AU14_r AU14_r AU14_r
AU04_r AU04_r
AU09_r AU09_r
ev_accel_z ev_accel_z ev_accel_z
ev_ws_vhlSx2 ev_ws_vhlSx2
pose_Tx pose_Tx
pose_Tz pose_Tz
ev_speed_roll ev_speed_roll
ev_accel_heading
ev_accel_roll ev_accel_roll ev_accel_roll
ev_steeringWheelSpeed ev_steeringWheelSpeed ev_steeringWheelSpeed
AU01_r AU01_r AU01_r
AU02_r AU02_r AU02_r
AU25_r AU25_r AU25_r
AU26_r AU26_r AU26_r
ev_ri_laneGap ev_ri_laneGap ev_ri_laneGap
pose_Ty pose_Ty
AU05_r AU05_r AU05_r
ev_accel_pitch ev_accel_pitch ev_accel_pitch
ev_brakePedal ev_brakePedal ev_brakePedal
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All Features Order By Clustering leadersSelection manualSelection

ev_ws_rotx1 ev_ws_rotx1
ev_speed_heading ev_speed_heading
ev_accel_y ev_accel_y
ev_ws_rotz0
ev_ws_rotz1
ev_wheelAngle ev_wheelAngle
ev_steeringWheelAngle ev_steeringWheelAngle
ev_ws_roty1
ev_ws_roty3
gaze_angle_x gaze_angle_x gaze_angle_x
ev_speed_pitch ev_speed_pitch ev_speed_pitch
ev_ri_roadAngle ev_ri_roadAngle ev_ri_roadAngle
ev_speed_z ev_speed_z ev_speed_z
ev_ws_rotx0 ev_ws_rotx0
ev_ws_vhlSx3 ev_ws_vhlSx3

Table 5.1: Features manual selected vs leaders selected

Furthermore, there was a correlation between the manually selected features and those
returned by the leaders’ function provided by the dendrogram.
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Figure 5.2: Hierarchical clustering and heatmap using Spearman rank-order correlation
on manual selected features.
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Figure 5.3: Hierarchical clustering and heatmap using Spearman rank-order correlation
on leaders selected features.

In figure 5.2 we can see the dendrogram and the heatmap of the hand-selected features,
and in figure 5.3 we can see the dendrogram and the heatmap of the leaders selected
features.

We can see how the selection based on correlation creates much less cohesive clusters,
in fact the maximum correlation between two different features is not less than 1 (cut
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value used in the previous phase). Despite this, however, we note that many features
that were important in the state of the art are not considered and in their place we
find lower level features.

A preventive analysis on the selected features based on the correlations and considering
the state of the art seen (Chapter 3.1.3), it was decided to select 39 different features,
shown in the table 5.2

Selected Features

AU01_r
AU02_r
AU04_r
AU05_r
AU06_r
AU07_r
AU09_r
AU10_r
AU12_r
AU14_r
AU15_r
AU17_r
AU20_r
AU23_r
AU25_r
AU26_r
AU45_r
accelPedal
accel_pitch
accel_roll
accel_x
accel_y
accel_z
brakePedal
ri_laneGap
ri_roadAngle
speed_heading
speed_pitch
speed_roll
speed_x
speed_y
speed_z
steeringTorq
steeringWheelAngle
steeringWheelSpeed
wheelAngle
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Selected Features

gaze_angle_x
gaze_angle_y
pose_RxRy

Table 5.2: Features Selected

5.2 Feature extraction

As already reported in Section 2.1, a supervised learning problem consists of input
patterns (X) and output patterns (y), such that an algorithm can learn how to predict
the output patterns from the input patterns.

The dataset we used was already predisposed to a supervised learning problem, but
each moment represented a series of point values.

In order to obtain more information from every moment of time, it was decided to pro-
cess the dataset through a window capable of extracting and maintaining information
of multiple point values.

In this way we are able to extract new features starting from the original ones. Then
we make a features selection to keep only the most significant features.

Sliding window is the way to restructure a time series dataset in such a way that the
machine learning models have a wider visibility considering also previous data rather
than considering a single datapoint.

One of the more popular sliding window statistics is the moving average. It is commonly
used with time series to smooth random short-term variations and to highlight other
components (trend, season, or cycle) present in your data.

The moving average is also known as the rolling mean and is calculated by averaging
data of the time series within k periods of time. The rolling method by pandas provides
rolling windows over the data, allowing us to easily obtain the simple moving average.

In our case, for each of the continuous input variables above we consider a window of
1.45 seconds (corresponding to 35 frames) sliced of 25 milliseconds (corresponding to
5 frames). This produces a two-second window with an overlap of 25 milliseconds.

Furthermore, Pandas allows us to calculate not only the average but also other statis-
tical measures. In fact, for each of the continuous input variables above, in a sliding
window, six input channels have been generated, namely the last value, average, mini-
mum, maximum, standard deviation, and trend.
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(a) Data are not very significant in the different condition of distraction.

(b) After STD processing, the same feature has interesting correlations with eyes-
off-road distraction, and there is also a difference between only cognitive distraction
and baseline.

Figure 5.4: Two Steering Wheel Angle plot of the same driver before and after window
processing.

For the average, minimum, maximum, standard deviation, Pandas was used, which
with the windowing function also allows you to calculate these parameters within the
window.

An example of the additional information that we can retrieve with this type of pro-
cessing can be seen in figure 5.4. Figure 5.4a shows the steering wheel angle before
performing the windowing and as we can see, there are no visible clues that allow us
to determine differences between distraction and normal driving. In fact, they follow
a constant trajectory that represents more than anything else the path.

For example, with the calculation of the STD, we immediately notice, in b, the features
acquires a greater significance and allows us to certainly distinguish some moments of
eyes-off-road. On the other hand, we notice small differences for the phase of only
cognitive distraction compared to the normal driving phase.
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For the last value instead, we proceeded by selecting the last value of each variable in
the window. In this way, a punctual value is obtained (and not a derived value) which
identifies the only real value contained in that window.

For the trend there is no ad-hoc function in pandas so, for each window, we proceeded
to calculate the average for each window and to calculate the differential between the
previous and the current average value.

In this way, for each variable, we add information relating to the previous windows and
we are able to realize if the average value in the windows rises, falls, or remains stable
with respect to the previous average value.

A further feature was created starting from the laneGap.
As reported in Section 4 the dataset description, laneGap is a discriminatory feature
as a distance jump represents a change of sensor lane. But this change of lane can
occur both in case of distraction and when changing lanes or roads.

Furthermore, in the window, through the calculation of the average, for example, we
lose the information relating to the lane change.

Figure 5.5: The idea of lane Position Data to detect the right and wrong trajectory.

The idea is to recognize one from the other simply by evaluating, after a change of line,
if the car quickly returns to the previous reference, or if this lane change is an isolated
event (which therefore indicates a safe change of lane) (figure 5.5).

Initially, therefore, it was decided to work inside the window, counting lane changes
inside it, but being the window of 1.45 seconds most of the counts that were highlighted
were all single.

For this reason, it was decided to calculate the differential between the average values
determined in the glazing. This differential will be low at the change points (gradual
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(a)

(b)

Figure 5.6: Two laneGap plot of the same driver (a) Data are not very significant
in the different condition of distraction (b) After STD processing, the same feature
has interesting correlations with eyes-off-road distraction, and there is also a difference
between only cognitive distraction and baseline.

descent or rise) but instead will have a higher value (both positive and negative) when
the change occurs abruptly. So, for each step, it computed the corresponding change
of a function.

The graph figure 5.6b identifies what has just been said (blue line), in fact, thanks
to this processing it is possible to more easily identify the lane change points in which
the driver was visually and cognitive distracted respect to 5.6a, unlike the simulation
circuit curves whose values are attenuated.

Another important processing that we have dealt with concerns window labeling.
The label, for either distraction, was 0 or 1. When we calculate a window values, also
the value of the distraction would be changed.

The goal is to leave an integer value for the eyes-off-road (0 or 1), determined by
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calculating the average within each window of all values referring to the eyes-off-road
and to bring the distraction value to 0 if the average distraction value in the window
does not exceed 0 and instead bring it to 1 if the value exceeds 0.

In this way we can teach the model to notice in advance and immediately from the
first signs of distraction.

Since the cognitive distraction is not instantaneous, as is the eyes-off-road condition,
the labeling was not carried out by setting 1 as soon as a value greater than 0 appeared
in the window.

In this case, it was decided to set the distraction to 1 only when the cognitive average
value was actually present in at least half of the data points contained in a window.
To do this, it was decided to set the distraction to 1 only when the average value in
the window exceeded 0.5, and vice versa to set it to 0.
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Chapter 6

Models Training and Evaluation

6.1 Model Training

After carrying out features extraction and selection, we proceeded to create models to
carry out the prediction. As seen in the state of the art, there are several machine
learning approaches and the newest refer to neural networks.

In this study, many machine learning techniques have been tested, but the best ones
obtained and reported are an MLP and a 1D-CNN, that outperforms all simple ma-
chine learning models and other neural networks tried, such as K-NN, random forest,
SVM, LSTM.

An important thing that it is essential when we carry out the learning, is to divide
the data set into a training, test, and validation set. In this way, we can monitor
the performance of the network on examples never seen before at each epoch (Test
Set) and after test if the accuracy and generalization are also good for validation data
(Validation Set).

6.1.1 Models Summary

The generic network architecture is shared for all types of neural networks and was
implemented through the Keras library in Python. The functions of Keras, therefore,
allow you to manually create a single model with two different outputs.

Overall, we have the input layer at the beginning and instead at the end two dif-
ferent Dense layers with a single neuron, where each one makes its prediction, one for
visual distraction and the other for cognitive distraction, both with sigmoid activation.
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Since there are two output neurons, two different measures of loss will be required
during compilation. Furthermore, the two tasks are the same; we want to predict if,
or not, a driver put his eyes-off-road or if is cognitively distracted. For this reason, as
loss measures, it was decided to implement binary cross-entropy. Keras also calculates
the total loss weighed.

In fact, because gradient descent requires you to minimize a scalar, you must combine
these losses into a single value in order to train the model. The resulting loss values
are summed into a global loss, which is minimized during training.

Note that very imbalanced loss contributions will cause the model representations to
be optimized preferentially for the task with the largest individual loss, at the expense
of the other tasks. To remedy this, you can assign different levels of importance to the
loss values in their contribution to the final loss. In such a situation, to balance the
contribution of the different losses.

The simplest way to combine different losses is to sum them all and multiplying the
value by a value between 0 and 1 which indicates its importance. In our specific case,
for example, we have that the visual distraction task turns out to be a very trivial task
as the head pose feature is also included among the features.

This means that the classifier will easily be able to determine a moment of visual
distraction at the expense of cognitive distraction which, on the other hand, does not
have such specific features.

In this way, the loss of visual distraction will be low and will always go down, while the
loss of cognitive distraction will be more fluctuating. For this reason, it was decided
to simply assign a much greater weight to the loss of cognitive distraction (0.9) and
instead of a small weight to visual distraction (0.1).

Further specification concerns the optimizer used. It was decided to use the one named
Stochastic Gradient Descent optimizer with an adaptive learning rate. Specifically, the
adaptive learning rate technique used, named Step decay, allows you to schedule drops
of the learning rate by a factor every few epochs. The training set was partitioned in
a sequential sequence of batch size.

This promise to stabilize gradient computation. In fact, network parameters are up-
dated using gradient descent and regularization with the following formula:

θnew ← θ − ηt
[

1
Bk

∑
i∈I
[
∂
∂θ
L (f (xi;θ) ,yi)

]
+ Bk

N
λ ∂
∂θ
R(θ)

]

That computing the derivate of the loss for each example x and target values y in the
specific batch and sum out together.
This process is controlled by the learning rate θ − ηt which indicates the amount of
displacement required to achieve a good change in weights.
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In fact, the summed and normalized value of a single batch will be multiplied by the
learning rate (which will resize it) before adding it to the values of the weights prior
to the iteration and then making the change.

Another trick that has been included in the stochastic gradient descent to avoid blindly
trusting the value we compute on the batch is the momentum α, which is a memory
mechanism (of inertia) that remembers how we changed the parameters in the previous
step and with a factor between 0 and 1 (aka inertia) we keep moving in that direction.
The following formula explains what we just said:

∆θ = −η∇θL(θ) + α∆θold , where α ∈ [0, 1]

Furthermore, the batch size influences the stability and speed of learning.

During the training, when all the examples end after several batches, then an epoch
is said to be over. At this point, it is not certain that after having dealt with all the
examples there is nothing more to change so you can proceed for several eras and try
to better refine the value of the weights.

However, there must be a limit to learning, in fact, trusting only the data and the loss
value, we must determine when to stop and therefore how to reach convergence.

In fact, the loss value will tend to decrease as the epochs advance, but we must be
careful not to fall into overfitting or to simply store the training data as otherwise, the
network will not be able to generalize on new examples. To do this, a model callback

Figure 6.1: Early stopping point in a model being learning

has been added and customized in our models’ training phase. Early Stopping is one
of the most widely used regularization techniques to combat the overfitting issue used
as callback during the training.
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It monitors the performance of the model for every epoch on a held-out validation set
during the training and terminates the training conditional on the validation perfor-
mance. The way it does is to stop training as soon as the validation error reaches a
minimum.

As the epochs go by, the algorithm learns and its error on the training set naturally
goes down, and so does its error on the validation set. However, after a while, the
validation error stops decreasing and actually starts to go back up.

This indicates that the model has started to overfit the training data. With Early
Stopping, you just stop training as soon as the validation error reaches the minimum.
Figure 6.1 shows what has just been described.

But in the case of Stochastic and Mini-batch Gradient Descent, as in our case, the
curves are not so smooth, and it may be hard to know whether you have reached the
minimum or not.

Therefore, the algorithm could stop the training too quickly and may end up with
the model trapped in a local minimum. By disabling it we requested the training to
be completely up to the last epoch, obtaining an overall better performance on the
validation.

A good trade-off, in the cases for which the full training is too time-consuming, maybe
to set the "patience" threshold to a higher value.

In our case, we set the "patience" threshold at 50 epochs with a min delta of 0.005.

This method is great for looking for a global minimum and not getting trapped in a
global minimum, but it increases learning time and does not guarantee that you will
get the best pattern.

This is because when the learning ends, then it means that n epochs have passed (in
our case 50) and the loss has not gone down. Returning the model obtained in the last
epoch would not return the model for which the loss was minimal.

To solve this problem, we use the extension of the callback in learning by also adding a
Model Checkpoint. Model Checkpoint, like Early Stop, monitors a parameter (in our
case the loss) and saves the model whenever it improves compared to the previous one.

In this way, the Early Stop tells us when we can stop because we have hopefully reached
a global minimum, while the Model Checkpoint saves the model at the point of the
global minimum.

Following the ordinary procedure for supervised learning, we use 10-fold cross-validation
on 90% of the instances, while 10% of each dataset has been kept as a separate test
set, on which the learned models have been tested.
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We used a “leave-one-out” approach: one model has been trained on the data from 9
out of 10 subjects, and tested on the data of the left-out subject (in turn, on every
subject) and results averaged.

The best two models generated and the hyperparameters fine-tuning will be shown
below.

MLP

For the Multi-Layer Perceptron model, in addition to the generic model just described,
a simple hidden layer (Dense) with Relu as activation function was added with a tuned
number of neurons. For this model the hyperparameters tried are:

1. Learning rate - 0.1, 0.01,0.001,0.005,0.0001

2. Batch size - 1, 32, 64, 128, 256, 512, 1024, 2048

3. Number of hidden neurons - 15, 30, 50, 100, 150, 300

To find the best combination we have monitored the f1 score of each model and finally
the best combination turned out is 0.01 for learning rate, batch size of 128, and 15
hidden neurons. In figure 6.2 is shown the MLP model summary

Figure 6.2: MLP model summary

1D-CNN

For the 1D Convolutional Neural Network model, in addition to the generic model,
were added two 1D-CNN layers, each followed by a Max Pooling layer. the second has
half as many filters as the first.
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These two layers should extract details from the features and make them more mean-
ingful for prediction. Finally, after flattening operation on the output of the 1D-CNN,
a dense layer was added to make the prediction on the CNN features. For this model
the hyperparameters tried are:

1. Learning rate - 0.1, 0.01,0.001,0.005,0.0001

2. Batch size - 1, 32, 64, 128, 256, 512, 1024, 2048

3. Number of filters - 5, 10, 30, 60, 90, 150

4. Kernel size - fixed to 234 to apply the convolution in only one dimension

5. Strides - 1, 3, 5, 7, 10, 15

6. Number of hidden neurons of the last dense layer - 15, 50, 150, 300, 500

To find the best combination we have monitored the f1 score of each model and finally
the best combination turned out is 0.0001 for learning rate, batch size of 128, 60 filters,
1 stride and 15 for hidden neurons of the dense layer. In figure 6.3 is shown the CNN
model summary.
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Figure 6.3: CNN model summary

6.2 Model Evaluation

To score the models’ performance, some common metrics were used: accuracy, pre-
cision, recall, and F-measure (F1), confusion matrix and ROC curve with AUC score
which are defined as following

1. Confusion Matrix: which shows the ways in which your classification model
is confused when it makes predictions. The idea is that the number of correct
and incorrect predictions are summarized with count values and broken down by
each class. This is a summary of prediction results on a classification problem.
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It represents a specific table showing the performance of a supervised learning
algorithm. Each line of this table represents instances of predicted values, while
the columns represent instances of actual values. It turns out to be a special
contingency table with two simple “real” and “predicted” dimensions and the
same class instances in both dimensions. Specifically for binary problems, it is
composed of 2 rows and two columns that report the number of false positives
(FP), false negatives (FN), true positives (TP), true negatives (TN). As can be
seen from the figure 6.4, there are two types of error: the first indicates false
positive, ie when the condition is actually negative and the prediction is positive;
the second indicates the false negative, which, unlike the previous one, indicates
a situation in which in reality the condition is positive but the system predicts
negatively. From these values, the main metrics such as precision, recall and
accuracy are calculated in both dimensions.

Figure 6.4: Confusion Matrix Metrics

2. Accurancy: which measures the overall performance of the model by quantifying
the proportion of correct predictions over all predictions:

Accuracy = Nc

N

where Nc is total number of correct observations, and N is total number of
observations.

3. Precision: which measures the number of true positives over total predicted
positives. The precision of class c can be obtained by:

Precision c = TPc

TPc+FPc

where TPc and FPc are the number of true-positive and false-positive of class c
(i.e. baseline and eyes-off-road events), respectively.

4. Recall: which measures the number of corrected classified observations over the
total observations in the class c which measures the number of corrected classified
observations over the total observations in the class c:
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Recallc = TPc

TPc+FNc

where FNc is the number of false-negative of class c.

5. F1-Score:which applies weighted harmonic average to the precision and recall:

F1c = 2 ∗ Precision c∗ Recall c

Precision c+Recallc

The advantage of F1 is its suitability for imbalanced data where the proportion of
one of the classes is lower compared to others. This measure combines precision
and recall metrics and weighting the classes based on the proportion.

6. Area under the curve (AUC): is one of the well-known measures that measure
the area under the ROC curve to quantify the performance of a binary classifier
where ROC can be obtained by plotting the true positive rate (recall) vs false
positive rate. the figure shows an example of the ROC curve and AUC. A very
performing classifier will approach the upper left corner of the chart. Random
guessing, as if it were the toss of a coin, is identified by the diagonal identified in
the figure by the dashed black line.

Figure 6.5: ROC curve example

6.2.1 Result

Below you can see the model’s result with the metrics just explained. For each classifier,
two figures are reported (one for each class to be predicted). In each image, there is
the confusion matrix, ROC curve, and a classification report that reports precision,
recall and f1-score for each class (0-baseline, 1-distraction) and accuracy.
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F1-SCORE

MODELS 1 2 3 4 5 6 7 8 9 10 AVERAGE

MLP 80% 83% 87% 88% 92% 82% 81% 84% 86% 88% 85%
1DCNN 85% 80% 87% 88% 91% 81% 79% 84% 85% 83% 84%

Table 6.1: F1-score values of the visual distraction class calculated through cross-
validation with 10 different participants (leave-one-out).

ACCURACY

MODELS 1 2 3 4 5 6 7 8 9 10 AVERAGE

MLP 52% 60% 57% 57% 57% 58% 55% 54% 57% 59% 57%
1DCNN 45% 61% 60% 57% 59% 57% 51% 51% 53% 50% 54%

Table 6.2: Accuracy values of the cognitive distraction class calculated through cross-
validation with 10 different participants (leave-one-out).

Immediately below are two graphs showing the prediction compared to the actual la-
belling (y-axis), in order of time (x-axis) and another graph containing the Cumulative
Distributional Function (CDF) of actual and predicted label which indicates what is
the cumulative frequency of each value between 0 and 1.

As already mentioned, the validation was carried out by performing a cross-validation
by alternating 10 different participants and the results reported represent the average
of every single model created. In fact, when we talk about the maximum score, we
mean the best model obtained during the cross-validation.

The models return a value between 0 and 1. To calculate the above metrics, you need
binary output.We have obtained this values by cutting the continuous value, between
0 and 1, returned by the model with a threshold. If the value exceeds the threshold
then eyes-off-road will be 1, otherwise 0.

After checks, the thresholds were determined. For the eyes-off-road the determined
threshold is 0.8 while for the cognitive distraction it is 0.5.

In table 6.1 we can see the results obtained by the two models for the eyes-off-road
condition, calculated through cross-validation. In table 6.2, on the other hand, we see
the values obtained for cognitive distraction.

In the figure 6.6 we can see the results obtained by the MLP model cross-validation
results in classifying the eyes-off-road, while in the figure 6.7 we can see the results for
cognitive distraction.

In the figure 6.8 we can see the results obtained by the 1D-CNN model in classifying
the eyes-off-road, while in the figure 6.9 we can see the results for cognitive distraction.
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As we can see, the average f1-score obtained for eyes-off-road condition is 85% for MLP
model and 84% for 1D-CNN Unfortunately, the results of the cognitive distraction
condition were not really satisfactory, since the best-obtained performance was around
61% of accuracy and 57% of average accuracy (this is a very poor result).

However, these two models, as already mentioned, outperform traditional machine
learning methods tried.
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(a)

(b)

Figure 6.6: MLP Eyes-off-road result (a) Confusion Matrix, ROC curve ad classification
Report (b) Actual vs Predicted Plot and Cumulative Distribution Function
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(a)

(b)

Figure 6.7: MLP Cognitive result (a) Confusion Matrix, ROC curve ad classification
Report (b) Actual vs Predicted Plot and Cumulative Distribution Function
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(a)

(b)

Figure 6.8: CNN Eyes-off-road result (a) Confusion Matrix, ROC curve ad classification
Report (b) Actual vs Predicted Plot and Cumulative Distribution Function
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(a)

(b)

Figure 6.9: CNN Cognitive result (a) Confusion Matrix, ROC curve ad classification
Report (b) Actual vs Predicted Plot and Cumulative Distribution Function
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During the development we checked frame by frame (from the videos recorded by the
simulator) the consistency of the predictions and it was deduced that many times the
classifier behaves even better than what f1-score tells us on eyes-off-road identification
(Figure 6.10).

Figure 6.10: Example of a frame in witch there is eyes-off-road distraction, and our
classifier detect it, but it isn’t labelled as distracted. RC: Real Cognitive, RV: Real
Eyes-off-road, PC: Predicted Cognitive, PV: Predicted Eyes-off-road

In fact, in many cases the eyes-off-road value returned by the classifier is 1 due to the
gaze or position of the head turned too far to the right or left.

However, these correctly classified moments are not labelled as an eyes-off-road condi-
tion. This happens above all because during the labelling of the data it was considered
to label as eyes-off-road only the moments included during the "visual distraction"
session (ie in 2 out of 4 driving sessions).

This represents a bias, as many participants during the test looked away and/or turned
their heads for reasons unrelated to the tests. These moments, however, are identified
by our classifier as can be seen in figure 6.11.

In the graph, we see actual values (blue) vs predicted ones (yellow). We can see that
at about 1600 there is a peak and seeing the video, the driver actually turned his head.

Another problem encountered in the dataset can be seen from the graph in the figure
6.11, at about 1200 we have a peak in yellow (therefore predicted) but the peak in blue
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Figure 6.11: Example of eyes-off-road actual vs predicted values

(therefore actual) is missing.

In some cases, in fact, the labelling is missing even during the visual distraction session.
in blue (so actual). In some cases, in fact, the labelling is missing even during the visual
distraction session.

Furthermore, as can be seen from the confusion matrix of the eyes-off-road condition,
there would also be cases in which the classifier does not correctly classify some instants
in which the eyes-off-road condition exists.

Inspecting these moments as well, it was possible to verify that in reality in many
cases these are very fast head movements, made by experienced drivers which therefore
imply few variations in the data in an entire window and the labelling value remains 1
even while these small head movements.

This is also for cases in which the driver takes his eyes-off-road, and for a moment
returns to look at the road and then turns his head again.

In labelling, this phenomenon is seen as two different moments of eyes-off-road, but in
the data processing carried out by us, going to amplify the data through a window,
these moments (in which therefore there is a few moments of non-distraction ) are
classified as continuous eyes-off-road but in some cases, since the output is a value
between 0 and 1, the returned value does not exceed the decision threshold of 0.8. In
fact, looking at the ROC curve, we realize that it is very close to the ROC heaven, the
area under the curve is very high.

According to this analysis, the classifier in the eyes-off-road condition performs very
well.

This is due to the fact that eyes-off-road distraction is a very simple task to retrieve
with the front camera; in fact, even with a very simple MLP Neural Network model,
on cross-validation (leave-one-out) the maximum f1 score obtained was 92% and an
average value of 85% and it doesn’t grow with more complex deep learning methods,
in that it couldn’t be done better with the dataset used. In fact, even with the 1D-CNN
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network no better results have been obtained.

On the other hand, the models reach poor performance and not precisely determine
the decision boundary for cognitive distraction. In fact, we are unable to determine
which factors it uses to make the prediction. In fact, the prediction returns a random
value, as if it were random guessing.

The ROC curve, indeed, is very close to the black dashed line that represents the
random classifier.

This is due to the scenario used in the acquisition of data from the simulator, which
was too simple and trivial (without other vehicles, without any obstacles) which led
the participants not to experience much cognitive distraction and therefore it was not
possible to differentiate between the data acquired during the standard driving phase
and during the driving phase with cognitive distraction (N-Back test).

An additional problem of the dataset used is that there is a high bias. As already
mentioned, during the acquisition of data, in the Baseline driving phase, in which the
only task should be driving, some users, due to boredom, spoke to other people in the
room that was not well isolated.

In order to reduce the bias, we have eliminated some participants from data. Another
source of bias in the dataset is due to the fact that the moments tagged with cognitive
distraction are too dense and include an amount of data that exceeds half of those
acquired and in addition, there is a clear shift from 0 to 1 (distracted and not ), for
each type of distraction induced.

Therefore, since the period is considered too long, it also includes times when the
distraction is not actually high, and this leads to excessive confusion for the model.

A further factor that most likely does not allow a good classification is due to the fact
that response to distraction is highly personal and subjective, so the normal behaviour
of one driver can be similar to the distracted behaviour of another driver.

This cause in the dataset a very high variance can be determined by the fact that during
learning, a much more precise classification is obtained for the training examples and
instead reach poor results during the testing and validation phase.

In fact, for very high model complexity (a high-variance model), the training data is
over-fit, which means that the model classify the training data very well, but returns
inadequate performances for any previously unseen data.

To solve this problem, we would have to acquire much more data from many different
drivers. This would allow the network to generalize better and not specialize too much
in training examples.

We also noticed that in the double distraction session, there is a lot of variation in the
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data than in the other two sessions. While in the purely visual distraction session we
have an instant distraction for a few seconds (time needed to perform the task on the
on-board computer), and while in the cognitive-only distraction session (during the
n-back test) we still have more attention on the road, in the double distraction session,
the errors caused by the visual distraction and the continuous cognitive distraction
(trying to remember the sequence that is dictated) causes a very high cognitive load
that takes away space for safe driving.

Figure 6.12: Early stopping point in a model being learning

As we can see in figure 6.12, the visual distraction prevails over the cognitive one,
because it is easier to identify. In fact, we note how in this case, the prediction of our
model concentrates in the visual distraction sessions (in the image on the time axis
about 500 to 1000) and in the double distraction session (about 1500 to 2000).

In the first quarter of the figure we see the guide in the baseline (which after all is
recognized), while in the third quarter we see the only cognitive distraction session and
the prediction is low as if we were in the baseline.

Despite the poor quality result, it was decided to inspect the classifications by identi-
fying the features that most influence the classification in order to better understand
what the model is learning from the data to determine the output.

Starting from these features, we compare them with recent research and subsequently
we tried to determine if the distribution of the data is the same for driving in the
baseline and during cognitive distraction and if it was different from the eyes-off-road
session.

6.3 Inference With Features Importance

Although the algorithm performance metrics suggest that our driver behaviour algo-
rithms can’t differentiate very well cognitive distraction, it was decided to inspect the
classifications by identifying the features that most influence the classification and
check if they are consistent with recent research reported in Section 3.1.3.
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In this world of ever-increasing data, we use all kinds of complex ensemble and deep
learning algorithms to achieve the highest possible accuracy. It’s sometimes magical
how these models predict, classify, recognize, and track unknown data. Accomplish-
ing this magic and more have been and would be the goal of intensive research and
development in the data science community that takes the name of eXplainable AI
(XAI).

There are mainly two state-of-the-art open-source explainability techniques for machine
learning models, namely LIME [61] and SHAP [60].

For LIME, an explanation is a local linear approximation of the model’s behaviours.
While the model may be very complex globally, it is easier to approximate it around
the vicinity of a particular instance. While treating the model as a black box, LIME
perturbs the instance desired to explain and learn a sparse linear model around it, as
an explanation.

SHAP (SHapley Additive exPlanations) is yet another additive feature attribution
method for model explainability. Its beauty lies in the fact that it unifies all available
frameworks for interpreting predictions. SHAP assigns each feature an importance
value for a particular prediction.

As its name suggests, SHAP is based on the Shapley value. In theory, a Shapley value
considers all possible feature interactions and is global for the underlying machine
learning model.

This is very different from LIME where the explanation is only local to the original
model. Consequently, SHAP explanations have better properties than LIME. We can
interpret individual prediction, or we can calculate Shapley values for all examples and
aggregate the effect to profile global feature importance. All we need is access to the
model’s prediction interface and also the original training dataset in order to do the
sampling approximation.

Figure 6.13 shows two beeswarm plot that indicate the most influence features that
contribute for the classification calculated through the DeepExplainer provided by
SHAP for two different participants.

Only 2 are reported which summarize the general behavior on different training phases.
They also summarize the two network outputs considering a single output.

In fact, many significant features for the eyes-off-road are not present or if present do
not reflect the real distribution necessary for the classification. This has been verified
and is caused by the fact that the number of visual distraction events are much fewer
than the total number of examples and, above all, much fewer than the moments in
which there is cognitive distraction.

Through the beeswarm plots, we can gather a lot of information on the use of data for
classification.
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In fact, first of all, the features are presented in order of importance; the top features
represent the most significant one while the bottom one indicates the twentieth most
significant.

Each horizontal feature presents the 1000 most representative windows (chosen with a
K-Medoids technique) drawn as points.

The SHAP Value (i.e. the impact of the feature in the classification) is reported on
the x-axis. As we can see in the figure, there is a vertical line drawn at 0.

This indicates that the distribution of the feature located to the right of the gray line
has a positive impact on the classification, vice versa if the distribution is on the left,
it will have a negative impact.

Also from the plot we can determine if the feature value is high or low and in which
cases. In fact, based on the color of the points we can determine the high or low
distribution of the values.

Beeswarm SHAP plot is able to show how small variations and perhaps combinations
between these and other features, have an impact on the classification.

In figure 6.13 you can see beeswarm plots for the two output of the neural network.
6.13a shows 20 most important features with their impact for visual distraction classi-
fication (or eyes-off-road) and 6.13b shows the 20 ones for cognitive distraction classi-
fication.

According to SHAP the most sensitive measures on which the classification is based are
in many cases based on some facial muscle expressions (action units) head-pose and
some vehicle dynamics. In fact in both the reported features importance beeswarm
plot we note AU45 average and max (blink frequency), AU04 std, average and max
(brow lowerer), AU17 average (chin raiser), AU25 min (lips part), but also gaze angle x
and y min and average (for each eye). Other important features coming from vehicular
dynamics, are i.e lane gap max and std, steering wheel speed max, min, speed of
longitudinal position (x).
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(a) Features Impact for eyes-off-road classification

(b) Features Impact for cognitive classification

Figure 6.13: Global Features impact on classification of distracted drivers based on
SHAP value
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(a) Plot of Blow lowerer standard devia-
tion (b) Plot of Upper lip raiser average values

(c) Plot of eyes blinking max values (d) Plot of Dimpler max values

(e) Plot of lips part standard deviation (f) Plot of chin raiser max values

(g) Plot of gaze angle of right eye average
values

(h) Plot of gaze angle of left eye average
values

Figure 6.14: Violin plots on different sessions condition of some global important fea-
tures returns by SHAP

Beyond these findings, further insight can be achieved by analyzing the distribution
of features across classes. Although analyzing these distributions in isolation negates
the power of machine learning methods to find complex patterns across features, it
provides some insight into the patterns in the data associated with classes. Figures
6.14 and 6.15 shows examples of this analysis, some violin plots partitioned by feature
and distraction type.
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(a) Plot of road angle min values
(b) Plot of Steering Wheel Angle standard
deviation

(c) Plot of Steering Wheel Speed standard
deviation (d) Plot of speed x vector average values

(e) Plot of lane gap average values (f) Plot of lane gap standard deviation

(g) Plot of accelerator pedal max values (h) Plot of accelerator pedal min values

Figure 6.15: Violin plots on different sessions condition of some global important fea-
tures returns by SHAP

Each violin plot shows the distribution of a feature across the vertical axis for the
three sessions analyzed (baseline, visual, cognitive). Differences in the means (shown
as points on the plot) or the shapes of the distributions between the classes suggest
that the measures may be useful indicators of distraction.
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6.4 Discussion

The results obtained, however, are in agreement with recent research.

As you can see in 6.14 Physical Measures are plotted, i.e. the features retrieved from
the internal camera through OpenFace. It is very important to notice how the distribu-
tions are very different in visual distraction driving sessions while there are no obvious
differences for cognitive distraction.

This agrees with Papakostas et al. [31]. In fact, they, as in our case, processed the videos
produced during data acquisition with OpenFace and determined the importance of
facial expressions based on the distraction tasks.

They have shown that during phases of visual distraction (texting or interacting with
the GPS) there are some discriminating AUs such as AU04, AU10, AU14, AU26, while
during phases of cognitive distraction (listening to the radio and N-back tests) the
AUs show few, if any, differences, especially during the N-back test. While during
listening to the radio, however, small differences are found in AU25, AU26 and AU17.
Looking at our important features 6.13 we notice that almost all of those mentioned
are present in the 20 most important ones for the cognitive distraction. This is because
in our dataset, for half of the cases of cognitive distraction, they also include visual
distraction.

In confirmation of what they have shown, in 6.14a, 6.14b, 6.14d we can see the AU04,
AU10 and AU14 respectively; the distributions during visual distraction are very differ-
ent from the distributions in baseline. Furthermore, from the plot provided by SHAP,
we can see how a high value of these features contributes positively to the cognitive
distraction classification.

In the last research reported, they demonstrate that AU17 and AU25 affect the cogni-
tive distraction with an increment induced by listening to the radio. In ours important
features, AU17 and AU25 appears for the cognitive distraction classification. By in-
specting the distributions, shown in 6.14e and 6.14f respectively, we realize that the
importance is associated with visual distraction and also for cognitive distraction.

However, in the violin we can see that there is a very small difference in AU25 distribu-
tions during the cognitive distraction phase compared to the baseline; during cognitive
distraction, the value tends to be higher, while during the baseline the value remains
squeezed towards 0. To confirmation of this, we can see in figure 6.13b plots of AU25
max and AU26 max and AU17 have a positive impact on cognitive distraction classifi-
cation when the value is high. Furthermore, the standard deviation of all of these have
a greater impact when their value decreases.

Being the cognitive distraction phase induced through the N-back test, it requires the
driver to speak. That said, the difference in the lip part distributions should be very
noticeable.
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The difference, however, is not very evident because the labelling of cognitive distrac-
tion includes a very long period of time in which the driver responds by saying "match"
only for a few moments. Also, as already reported in Chapter 4, there are many cases
where (albeit for a short time) the drivers spoke during the baseline session. This
confuse the model.

Another feature that is important to the prediction is blinking 6.14c. As we can see,
the distribution of values in these plots for the visual distraction session is very different
from the distribution in the baseline session and it appear in the 20 greatest impact
features for the visual distraction classification (figure 6.13a) and it have an positive
impact when the value is high.

However, there is a lot of research showing a strong influence of the N-Back task in eyes
blinking; Čegovnik et al. [48] have shown that with the increase of N in the N-Back
task there is a substantial increase in blinking. In confirmation of this, deeper analysis
on 6.14c shows that there is a small difference in the two distributions and it is inherent
the means.

In fact, in the cognitive session, the mean appears to be higher than in the baseline
session. In confirmation of this, plot in figure 6.13b show us the impact of AU45. When
the value is high, the impact on the cognitive distraction classification increased. This
is also demonstrated in [19].

Another very noticeable difference is the gaze. We do not notice differences between
cognitive phase and baseline, but trivially we find differences between baseline and
visual distraction (which we remember being eyes-off-road).

When we take our eyes off the road obviously our gaze will change direction. That’s
what we see in the plots 6.14g and 6.14h.

There are also some differences in vehicle dynamics in recent research that we have
confirmed.

In [47] for example, the Standard deviation of lane gap is the most sensitive feature to
distraction along with speed and steering mean measures.

In our case, these features appear in the 20 most influential features. Figure 6.15f
shows Standard deviation of lane gap and figure 6.15e shows Average values of lane
gap;

In these we can see the differences in the mean and in the distribution in the 3 different
sessions. There is a major difference for the visual distraction session but we also notice
a small difference in the cognitive distraction session when the value appear to decrease.
However, in the plots provided in figure 6.13 we note that the lane gap value has a
positive impact when the value is high. This is due to the fact that the number of cases
of cognitive distraction are much higher than that of visual distraction, and we also
include moments in which driver is also visually distracted and in which the driver is

94



CHAPTER 6. MODELS TRAINING AND EVALUATION

relatively attentive.

On the other hand, our steering wheel speed std 6.15c and mean shows no significant
differences except in the form of the distribution of the visual distraction session.
Despite this we note that plot in figure 6.13a, shows that an higher value of steering
wheel speed min and average contribute positively in the classification. This confirms
the study done in [47].

In the latter research and in [19] was also demonstrated correlation with distraction and
speed. In particolar, when we engages in a cognitive distraction. In particular, when
we are cognitively distracted we tend to maintain a constant and relatively low speed,
while when we are distracted manually or visibly, we tend to let go of the accelerator
and then slow down.

In our case, as we see in the plot 6.15d, the averages are equal but there is a difference
in the shape of the distributions.

We can see how in the phase of cognitive distraction the distribution seems to be slightly
more concentrated towards the center so we tend to remain at a constant speed.

While, as also demonstrated in [23], during visual distraction there is a tendency to
have lower speeds. In the baseline instead, the value is uniformly distributed with a
long tail upwards which indicates cases in which the driver accelerates more.

The analysis carried out on the features of greatest impact for the model, however,
the speed is among the most important but has a positive impact when the value is
average. When the value is low it has a negative contribution.

This could be due to the very long labeling periods and to the motorway scenario which
does not allow to grasp substantial differences in speed.

Furthermore, the poor generalization of the model and therefore the differences in the
driving styles of the various participants could be fundamental.

The accelerator pedal appears to be an additional important feature in identifying
distraction and is very related to speed.

In fact, as you can see in 6.15g and 6.15h, where the distributions of the MIN and
MAX accelerator pedal values are shown (which we remember to be a value between 0
and 1), we see notable differences for all three sessions.

During the visual distraction, as for speed, there is a tendency to press the pedal less,
in fact, the shape of the distribution both for the MAX and MIN values is concentrated
downwards and differs greatly from the other two sessions. This is because when we
take our eyes off the road, we instinctively let go of the accelerator pedal. This leads
to the collapse of values in the distribution.
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In the cognitive distraction session, instead, we can see how the pressure on the pedal
remains constant and concentrated on a low value but with few, if any, values of 0.
This is because when we cognitively distract ourselves we tend to fix our behaviour
and not to exceed.

In fact, seeing the distribution during the baseline, we can see how the value is more
uniformly distributed and also comes to have a long tail towards the maximum value.

But despite this in the features of greatest impact for the classification this feature

However, we could not find confirmation for the steering wheel angle. Some recent
research by Engström et al. [27] or by Jin et al. [19] suggest that driving under cognitive
distraction induced by a 2-back test increased steering angle variance.

Figure 6.15b shows the distribution of the steering wheel angle standard deviation in
our dataset. While the variations in the data are almost imperceptible and the averages
appear to be the same, there is a small difference which could mean the opposite of
the research mentioned above.

It would seem that during the phase of cognitive distraction the steering remains more
fixed compared to the baseline (even if of minimal and almost intangible values). In
fact, this feature does not appear in the features with greater impact in the classification
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Real-Time System Interaction

Since the general goal of Next Perception is the creation of a Driver Monitoring System
(DMS) made up of multiple intelligent components that interact and collaborate with
each other to determine the complex state of the driver (Section 1.2), our contribution
was the development of the DDC. The goal is to put our module in communication
with the simulator, which in turn will be connected to the remaining modules of the
DMS.

Meanwhile, the driver distraction detection warning system, in a real environment,
comprises a driver distraction detection sensor assembly, an in-vehicle computer proces-
sor and a driver distraction warning assembly, wherein the driver distraction detection
sensor assembly detects and collects behaviour and action information of the driver
and sends the behaviour and action information to the in-vehicle computer processor.

In our case, the real-time system is simulated, in fact, to integrate our classifier in the
simulator environment, it was decided to create an embedded system that communi-
cates with the simulator through the Publish / Subscribe information exchange system.
In this way, our system will have both the computational and the communication side,
independent from that of the simulator.

Publish/subscribe is a style of messaging application in which the providers of in-
formation (publishers) have no direct link to specific consumers of that information
(subscribers), but the interactions between publishers and subscribers are controlled
by pub/sub-brokers.

In a publish/subscribe system, a publisher does not need to know who uses the in-
formation (publication) that it provides, and a subscriber does not need to know who
provides the information that it receives as the result of a subscription. Publications
are sent from publishers to the pub/sub-broker, subscriptions are sent from subscribers
to the pub/sub-broker, and the pub/sub-broker forwards the publications to the sub-
scribers.
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A typical publish/subscribe system has more than one publisher and more than one
subscriber. An application can be both a publisher and a subscriber.

This style of messaging contrasts with a point-to-point style of messaging application,
in which the application that sends messages needs to know the destinations of the
messages that it sends.

Specifically, the MQTT Broker was used. In the diagram shown in figure 7.1 you can
see the interaction and data exchange by the broker.

Figure 7.1: Real-Time System Interaction with MQTT Brokers
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As you can see in the diagram, the first circle, named ‘Simulator’, represents the sources
of information coming from the CAN bus system of the simulator.

In the rectangular boxes instead, there are all the clients. The first one that we can
see is ‘Vehicle Dynamics Sender’, registered to the MQTT Broker of RE:Lab, directly
connected to the Simulator.

The ‘Vehicle Dynamics Sender’ has the purpose of sending internal and external vehicle
dynamics data through the TOPIC ’Simulator_Data’ This Broker is connected between
a bridge with another broker, used for executing internal operations.

The RE:Lab Broker broker is only responsible for sending the data and accepts only
the results of the prediction as input.

This way it is unaware of everything the internal broker does. In fact, all the operations
performed by the internal broker are seen as a ’black box’ to which it is sufficient to
send the data with the two TOPICs and which returns the results of the prediction
with a special TOPIC.

Our black box system is a Raspberry in which we have installed the Unix operating
system and developed the components necessary for its operation.

As a first version, it was decided to include the video camera within our module, in
fact in the figure it can be seen that it is directly connected to the Openface module.

Next, we can see the Internal Broker that puts in communication different modules.
The first client that is activated is OpenFace_Module. It is responsible for capturing
the video and processing it through OpenFace to extract the necessary features for the
classifier from the driver’s face. Furthermore, OpenFace Sender takes care of publish-
ing the data extracted through the TOPIC ’OpenFace_Data’.

Right after, there is the Joiner Module which is a client that is subscribed to topics of
sending data (‘OpenFace_data’ and ‘Simulator_data’) and waits until it receives 35
instances from both topics and, when it receives them, sends them through the topic
’toPrepocess_data’. Subscribed on this topic there is the Preprocessing_Module which
when it receives the packet containing 35 lines proceeds with the data windowing, in
the same way described in the learning phase.

Having obtained a single example to predict starting from 35 instances (remembering
that the window size is 35), it is sent with the TOPIC ‘toPredict_data’ to the broker.

Subscribed to this topic there is another client called Predictor_Module which having
received the single data to be predicted, perform scaling, prediction, and finally, publish
the result of the prediction on the topic ‘DDC_Module’.

Recall that this topic is configured with the bridge in such a way that it is seen by the
main broker of RE: Lab (and not only by our internal broker).
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This system will allow us to fine-tune the models and check their behaviour in real-
time. Figure 7.2 shows a photo captured after the installation of our module inside the
simulator environment.

Figure 7.2: Real-Time System installed on simulator. Above the speedometer you can
see the video camera and behind on the right you can see our module as a silver box
with a black panel in front.

Furthermore, this also allows, in the Next Perception project context, to subscribe
several clients in order to receive the predictions in real-time.
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Conclusion and Future Work

Driver distraction is one of the leading causes of car fatal accidents. Many solutions
have been suggested to diminish driver distraction and increase driver safety. Using
machine learning and deep learning methods to detect driver behaviour is one of these
solutions.

In this thesis, a review of the recent research was first carried out to better understand
which features to use in order to determine driving distraction.

Using a dataset produced by 26 different participants in which visual and cognitive
distraction are induced, we proceeded by carrying out a feature selection (manual and
automatic) and subsequently the amount of information of each single data point was
increased, carrying out processing through the sliding windows’ technique considering
about 1.5 seconds before, thus recovering more details and statistical values such as
Maximum, STD, Trend in a window.

After that, we used this dataset to train traditional machine learning techniques. The
best reported are Multilayer Perceptron and 1D Convolutional neural network.

Finally, we have implemented the MLP model in an embedded system that is able to
communicate with the simulator and determine whether the driver is distracted or not.

The results obtained can be very interesting from a certain point of view, as we re-
alize that the implemented architectures do their job quite well for the eyes-off-road
distraction more than the metrics tell us. The same thing is not true for cognitive
distraction.

In fact, despite creating more sophisticated deep architectures and changing the learn-
ing algorithm, we don’t get improvements.

After a thorough analysis, we realized that the eyes-off-road distraction labelling has
some missing moments, therefore there are cases in which there is a distraction but
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they not were labelled as distracted, or cases of eyes-off-road not induced from the
test, due to the fact that the labelling was done only in the moments included in the
distraction sessions. So we are not guiding the network in the training operation in the
correct way.

But even so, the final model implemented in the embedded system predicts quite well
the eyes-off-road condition but with the available data, it isn’t possible to obtain an
f1-score higher than 92 %.

This is a plus for our model, which therefore managed to learn better than we were
teaching it.

On the other hand, all models trained reach poor performance and does not precisely
determine the decision boundary for cognitive distraction.

In fact, one of the results / objectives achieved in this thesis was to understand that the
experiment’s setting does not allow to retrieve information from the data that allow us
to build a classifier for cognitive distraction.

This thesis work has shown how having an unrealistic and very simple scenario in the
acquisition of data from the simulator, with very long labelling periods of cognitive
distraction, acquired even in a context that is not entirely isolated for which cognitive
distraction occurs even in cases of baseline driving, leads us not to be able to determine
exactly the decision boundary for cognitive distraction.

After an inference analysis with the most important features on which is based the
classifier, we determine that in a driving scenario without other cars and on the highway
without different tasks to execute, the n-back task of cognitive distraction does not
change significantly driving measurements and driver behaviour that in recent research
are affected from distraction.

In addition, the extreme simplicity of the scenario, which therefore does not include
intersections, traffic lights, speed limit, other cars or pedestrians, and experiment set-
tings, does not allow us to capture and understand, for example, the variations in
reaction times, braking times, time to collision, that are very important comparing
cases of cognitive distraction to cases of normal driving.

Furthermore, we realize that the response to cognitive distraction is highly personal
and subjective, so the normal behaviour of one driver can be similar (too similar for a
model) to the distracted behaviour of another driver. This leads us to learn spurious
correlations which then leads us to poor quality predictions for examples not seen
previously.

With obvious and consistent effects, visual distraction can be estimated by a general
model that describes the instantaneous changes of drivers’ eye glance patterns, head
pose, lane gap and other vehicle dynamics data and fits all drivers.

102



CHAPTER 8. CONCLUSION AND FUTURE WORK

The estimated visual distraction strongly relates to crash risk and so is very important
in order to prevent cars accidents. In contrast, the effects of cognitive distraction are
subtle, inconsistent and cumulative.

The detection of cognitive distraction considers a comprehensive view of driver be-
haviour across a relatively long period of time and needs to be personalized for indi-
vidual drivers.

Data mining methods are a promising approach to capture such complex relationships
and having a large amount of data to analyze, should aid the recognition and elucidation
of cognitive distraction effects.

As future work, in this research, we will focus on the acquisition of new data, starting
from some clarifications such as the presence of other vehicles, a larger circuit with
more obstacles, an isolated room in which to take the test, pedestrians that cross the
road and other realistic factors.

This would allow us to consider some additional features that may be significant for
the classification of the cognitive distraction, such as reaction time, time to collision,
breaking events, etc.

Furthermore, in the context of research, it is important to simulate reality in the best
possible way, in order to create automatic systems capable of recognizing reality well.

As final step, the Driver Distraction Classifier will be fine-tuned on the driver cockpit
environment integrated into the simulator with the embedded system.
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